English

Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element. - Mathematics

Advertisements
Advertisements

Question

Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.

Options

  • True

  • False

MCQ
True or False

Solution

This statement is False.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations And Functions - Solved Examples [Page 11]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 1 Relations And Functions
Solved Examples | Q 34 | Page 11

RELATED QUESTIONS

Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) =  (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.

(iii)and hence write the inverse of elements (5, 3) and (1/2,4)


Determine whether or not of the definition of ∗ given below gives a binary operation. In the event that ∗ is not a binary operation, give justification for this.

On Z+, define ∗ by a ∗ b = a – b


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On R, define by a*b = ab2

Here, Z+ denotes the set of all non-negative integers.


Prove that the operation * on the set

\[M = \left\{ \begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix}; a, b \in R - \left\{ 0 \right\} \right\}\] defined by A * B = AB is a binary operation.


The binary operation * : R × R → R is defined as a * b = 2a + b. Find (2 * 3) * 4.


Let '*' be a binary operation on N defined by a * b = 1.c.m. (a, b) for all a, b ∈ N

Check the commutativity and associativity of '*' on N.


Check the commutativity and associativity of the following binary operation  '*' on R defined by a * b = a + b − 7 for all ab ∈ R ?


Check the commutativity and associativity of the following binary operation '*' on N, defined by a * b = ab for all ab ∈ N ?


Check the commutativity and associativity of the following binary operation '*' on Z defined by a * b = a − b for all ab ∈ Z ?


On the set Q of all ration numbers if a binary operation * is defined by \[a * b = \frac{ab}{5}\] , prove that * is associative on Q.


On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.


Construct the composition table for +5 on set S = {0, 1, 2, 3, 4}.


Write the total number of binary operations on a set consisting of two elements.


For the binary operation multiplication modulo 10 (×10) defined on the set S = {1, 3, 7, 9}, write the inverse of 3.


For the binary operation multiplication modulo 5 (×5) defined on the set S = {1, 2, 3, 4}. Write the value of \[\left( 3 \times_5 4^{- 1} \right)^{- 1}.\] 


Write the composition table for the binary operation ×5 (multiplication modulo 5) on the set S = {0, 1, 2, 3, 4}.


If the binary operation * on Z is defined by a * b = a2 − b2 + ab + 4, then value of (2 * 3) * 4 is ____________ .


An operation * is defined on the set Z of non-zero integers by \[a * b = \frac{a}{b}\]  for all ab ∈ Z. Then the property satisfied is _______________ .


Let * be a binary operation defined on Q+ by the rule

\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .


On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?


Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A


Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.


Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:

* a b c d
a a c b d
b d a b c
c c d a a
d d b a c

Is it commutative and associative?


Choose the correct alternative:

A binary operation on a set S is a function from


Let * be a binary operation on set Q – {1} defind by a * b = a + b – ab : a, b ∈ Q – {1}. Then * is ____________.


Let * be the binary operation on N given by a * b = HCF (a, b) where, a, b ∈ N. Find the value of 22 * 4.


Determine which of the following binary operation on the Set N are associate and commutaive both.


a * b = `((a + b))/2` ∀a, b ∈ N is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×