English

Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) =  (ac, b + ad), for all (a, b) (c, d) ∈ A. Find - Mathematics

Advertisements
Advertisements

Question

Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) =  (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.

(iii)and hence write the inverse of elements (5, 3) and (1/2,4)

Solution

(i)

Let E=(x, y) be the identity element in A with respect to *, x,  yQ such that X*E=X=E*X, XA

X*E=X and E*X=X

(ax, b+ay)=(a, b) and (xa, y+xb)=(a, b)

Considering (ax, b+ay)=(a, b)

ax=a     

x=1    and b+ay=b 

y=0                 [x=1]

Also,

Considering (xa, y+xb(a, b)

xa=a

x=1and y+xb=b

y=0                  [ x=1] (1, 0) is the identity element in A with respect to *.

(ii)

Let F=(m, n) be the inverse in A, m, nQ

X*F=E and F*X=E

(am, b+an)=(1, 0) and (ma, n+mb)=(1, 0)

Considering (am, b+an)=(1, 0)

am=1

m=1/and b+an=0

n=b/a   

Also,

Considering (ma, n+mb)=(1, 0)

ma=1

m=1/and n+mb=0

n=b/a          (m=1/a)

The inverse of (a, b)A with respect to * is `(1/a,−b/a)`A1.

(iii)Now let us find the inverse of elements `(5, 3) and (1/2,4)`

Hence , inverse of `(5,3) is (1/5,3/5)`

And inverse of `(1/2,4) is (2,-4/(1/2))=(2,-8)`

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Patna Set 2

RELATED QUESTIONS

Determine whether or not of the definition of ∗ given below gives a binary operation. In the event that ∗ is not a binary operation, give justification for this.

On Z+, define ∗ by a ∗ b = a – b


Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.

(i) Compute (2 * 3) * 4 and 2 * (3 * 4)

(ii) Is * commutative?

(iii) Compute (2 * 3) * (4 * 5).

(Hint: use the following table)

* 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b

Here, Z+ denotes the set of all non-negative integers.


Determine whether or not the definition of *given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On Z+, defined * by a * b = ab

Here, Z+ denotes the set of all non-negative integers.


Prove that the operation * on the set

\[M = \left\{ \begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix}; a, b \in R - \left\{ 0 \right\} \right\}\] defined by A * B = AB is a binary operation.


Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?


Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all ab ∈ Z ?


Check the commutativity and associativity of the following binary operation  '*' on R defined by a * b = a + b − 7 for all ab ∈ R ?


Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = (a − b)2 for all ab ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Z defined by a * b = a − b for all ab ∈ Z ?


On Z, the set of all integers, a binary operation * is defined by a * b = a + 3b − 4. Prove that * is neither commutative nor associative on Z.


The binary operation * is defined by \[a * b = \frac{ab}{7}\] on the set Q of all rational numbers. Show that * is associative.


If the binary operation * on the set Z is defined by a * b = a + b −5, the find the identity element with respect to *.


Let * be a binary operation on Q0 (set of non-zero rational numbers) defined by \[a * b = \frac{ab}{5} \text{for all a, b} \in Q_0\]

 Show that * is commutative as well as associative. Also, find its identity element if it exists.


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the identity element in A ?


Define an associative binary operation on a set.


Define identity element for a binary operation defined on a set.


For the binary operation multiplication modulo 10 (×10) defined on the set S = {1, 3, 7, 9}, write the inverse of 3.


Let +6 (addition modulo 6) be a binary operation on S = {0, 1, 2, 3, 4, 5}. Write the value of \[2 +_6 4^{- 1} +_6 3^{- 1} .\]


A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .


The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .


Let * be an operation defined as *: R × R ⟶ R, a * b = 2a + b, a, b ∈ R. Check if * is a binary operation. If yes, find if it is associative too.


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A ∧ B


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A ∧ B) v C


Let A be Q\{1}. Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the existence of an identity, the existence of inverse properties for the operation * on A


Choose the correct alternative:

Which one of the following is a binary operation on N?


Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a2 + b2 ∀ a, b ∈ Q


The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.


Let * be a binary operation on set Q – {1} defind by a * b = a + b – ab : a, b ∈ Q – {1}. Then * is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×