Advertisements
Advertisements
Question
Let * be a binary operation on Q0 (set of non-zero rational numbers) defined by \[a * b = \frac{ab}{5} \text{for all a, b} \in Q_0\]
Show that * is commutative as well as associative. Also, find its identity element if it exists.
Solution
Commutativity:
\[\text{ Let }a, b \in Q_0 \]
\[a * b = \frac{ab}{5}\]
\[ = \frac{ba}{5}\]
\[ = b * a \]
\[\text{Therefore},\]
\[a * b = b * a, \forall a, b \in Q_0\]
Associativity:
\[\text{Let}a, b, c \in Q_0 \]
\[a * \left( b * c \right) = a * \left( \frac{bc}{5} \right)\]
\[ = \frac{a\left( \frac{bc}{5} \right)}{5}\]
\[ = \frac{abc}{25}\]
\[\left( a * b \right) * c = \left( \frac{ab}{5} \right) * c\]
\[ = \frac{\left( \frac{ab}{5} \right)c}{5}\]
\[ = \frac{abc}{25}\]
\[\text{Therefore},\]
\[a * \left( b * c \right) = \left( a * b \right) * c, \forall a, b, c \in Q_0 \]
Thus, * is associative on Qo.
Finding identity element :
Let e be the identity element in Z with respect to * such that
\[a * e = a = e * a, \forall a \in Q_0 \]
\[a * e = a \text{ and }e * a = a, \forall a \in Q_0 \]
\[ \Rightarrow \frac{ae}{5} = a \text{ and }\frac{ea}{5} = a, \forall a \in Q_0 \]
\[ \Rightarrow e = 5 , \forall a \in Q_0 \left[ \because a \neq 0 \right]\]
Thus, 5 is the identity element in Qo with respect to *.
APPEARS IN
RELATED QUESTIONS
Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.
Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) = (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.
(iii)and hence write the inverse of elements (5, 3) and (1/2,4)
Determine whether or not of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = ab
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On R, define * by a * b = ab2
For each binary operation * defined below, determine whether * is commutative or associative.
On Q, define a * b = `(ab)/2`
Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by a ∨b = min {a, b}. Write the operation table of the operation∨.
Let A = N × N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d)
Show that * is commutative and associative. Find the identity element for * on A, if any.
Consider a binary operation * on N defined as a * b = a3 + b3. Choose the correct answer.
(A) Is * both associative and commutative?
(B) Is * commutative but not associative?
(C) Is * associative but not commutative?
(D) Is * neither commutative nor associative?
Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as
a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`
Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.
Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.
Determine whether the following operation define a binary operation on the given set or not : 'O' on Z defined by a O b = ab for all a, b ∈ Z.
Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by
a ×6 b = Remainder when ab is divided by 6.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b
Here, Z+ denotes the set of all non-negative integers.
Determine whether or not the definition of *given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = ab
Here, Z+ denotes the set of all non-negative integers.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On R, define by a*b = ab2
Here, Z+ denotes the set of all non-negative integers.
Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = a + ab for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = (a − b)2 for all a, b ∈ Q ?
Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative ?
Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that '*' is both commutative and associative on Q − {−1}.
Find the inverse of 5 under multiplication modulo 11 on Z11.
Define a binary operation on a set.
If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.
Let * be a binary operation on N given by a * b = HCF (a, b), a, b ∈ N. Write the value of 22 * 4.
Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all a, b ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .
Let * be a binary operation defined on set Q − {1} by the rule a * b = a + b − ab. Then, the identify element for * is ____________ .
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ________________ .
The law a + b = b + a is called _________________ .
The number of binary operation that can be defined on a set of 2 elements is _________ .
Fill in the following table so that the binary operation * on A = {a, b, c} is commutative.
* | a | b | c |
a | b | ||
b | c | b | a |
c | a | c |
Let A be Q\{1}. Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the existence of an identity, the existence of inverse properties for the operation * on A
Choose the correct alternative:
Subtraction is not a binary operation in
Choose the correct alternative:
If a * b = `sqrt("a"^2 + "b"^2)` on the real numbers then * is
Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?
In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = a – b for a, b ∈ Q
A binary operation on a set has always the identity element.
Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.
The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.
If * is a binary operation on the set of integers I defined by a * b = 3a + 4b - 2, then find the value of 4 * 5.