Advertisements
Advertisements
Question
Choose the correct alternative:
If a * b = `sqrt("a"^2 + "b"^2)` on the real numbers then * is
Options
Commutative but not associative
Associative but not commutative
Both commutative and associative
Neither commutative nor associative
Solution
Both commutative and associative
APPEARS IN
RELATED QUESTIONS
Let * be the binary operation on N given by a * b = L.C.M. of a and b. Find
(i) 5 * 7, 20 * 16
(ii) Is * commutative?
(iii) Is * associative?
(iv) Find the identity of * in N
(v) Which elements of N are invertible for the operation *?
Find which of the operations given above has identity.
Let A = N × N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d)
Show that * is commutative and associative. Find the identity element for * on A, if any.
Determine whether the following operation define a binary operation on the given set or not : 'O' on Z defined by a O b = ab for all a, b ∈ Z.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b
Here, Z+ denotes the set of all non-negative integers.
Let * be a binary operation on the set I of integers, defined by a * b = 2a + b − 3. Find the value of 3 * 4.
Let S = {a, b, c}. Find the total number of binary operations on S.
On Q, the set of all rational numbers, * is defined by \[a * b = \frac{a - b}{2}\] , shown that * is no associative ?
The binary operation * is defined by \[a * b = \frac{ab}{7}\] on the set Q of all rational numbers. Show that * is associative.
Define a binary operation on a set.
Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.
If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .
On the power set P of a non-empty set A, we define an operation ∆ by
\[X ∆ Y = \left( \overline{X} \cap Y \right) \cup \left( X \cap \overline{Y} \right)\]
Then which are of the following statements is true about ∆.
For the binary operation * defined on R − {1} by the rule a * b = a + b + ab for all a, b ∈ R − {1}, the inverse of a is ________________ .
Determine whether * is a binary operation on the sets-given below.
a * b = min (a, b) on A = {1, 2, 3, 4, 5}
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A v B
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = ab2 for a, b ∈ Q
A binary operation A × A → is said to be associative if:-