Advertisements
Advertisements
Question
On the power set P of a non-empty set A, we define an operation ∆ by
\[X ∆ Y = \left( \overline{X} \cap Y \right) \cup \left( X \cap \overline{Y} \right)\]
Then which are of the following statements is true about ∆.
Options
commutative and associative without an identity
commutative but not associative with an identity
associative but not commutative without an identity
associative and commutative with an identity
Solution
Associative and commutative with an identity
\[\text{ Commutativity }: \]
\[X ∆ Y = \left( \overline{X} \cap Y \right) \cup \left( X \cap \overline{Y} \right)\]
\[ = \left( \overline{Y} \cap X \right) \cup \left( Y \cap\overline{ X} \right)\]
\[ = Y ∆ X\]
\[\text{ Thus }, \]
\[X ∆ Y = Y ∆ X\]
\[\text{ Hence, ∆ is commutative on A } .\]
Let \[\phi\] be the identity element for \[∆\] on P.
\[A ∆ \phi = \left( \overline{A} \cap \phi \right) \cup \left( A \cap \overline{\phi} \right)\]
\[ = \phi \cup A\]
\[ = A\]
\[\text{ and }, \]
\[\phi ∆ A = \left( \overline{\phi} \cap A \right) \cup \left( \phi \cap \overline{A} \right)\]
\[ = A \cup \phi\]
\[ = A\]
APPEARS IN
RELATED QUESTIONS
Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) = (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.
(iii)and hence write the inverse of elements (5, 3) and (1/2,4)
Determine whether or not of the definition of ∗ given below gives a binary operation. In the event that ∗ is not a binary operation, give justification for this.
On Z+, define ∗ by a ∗ b = a – b
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = a
For each binary operation * defined below, determine whether * is commutative or associative.
On Z+, define a * b = ab
Given a non-empty set X, consider the binary operation *: P(X) × P(X) → P(X) given by A * B = A ∩ B &mnForE; A, B in P(X) is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation*.
Number of binary operations on the set {a, b} are
(A) 10
(B) 16
(C) 20
(D) 8
Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * b= a − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.
Let * be a binary operation on N given by a * b = LCM (a, b) for all a, b ∈ N. Find 5 * 7.
Check the commutativity and associativity of the following binary operation '*' on R defined by a * b = a + b − 7 for all a, b ∈ R ?
Check the commutativity and associativity of the following binary operation '*' on N, defined by a * b = ab for all a, b ∈ N ?
Check the commutativity and associativity of the following binary operation '*' on Z defined by a * b = a − b for all a, b ∈ Z ?
Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?
Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :
Find the identity element in A ?
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{for all a, b} \in Q_0\].
Show that 'o' is both commutative and associate ?
On R − {1}, a binary operation * is defined by a * b = a + b − ab. Prove that * is commutative and associative. Find the identity element for * on R − {1}. Also, prove that every element of R − {1} is invertible.
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the invertible element in A ?
Construct the composition table for ×4 on set S = {0, 1, 2, 3}.
For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.
Write the identity element for the binary operation * on the set R0 of all non-zero real numbers by the rule \[a * b = \frac{ab}{2}\] for all a, b ∈ R0.
On the set Z of all integers a binary operation * is defined by a * b = a + b + 2 for all a, b ∈ Z. Write the inverse of 4.
Define a binary operation on a set.
If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .
If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .
Q+ denote the set of all positive rational numbers. If the binary operation a ⊙ on Q+ is defined as \[a \odot = \frac{ab}{2}\] ,then the inverse of 3 is __________ .
The binary operation * is defined by a * b = a2 + b2 + ab + 1, then (2 * 3) * 2 is equal to ______________ .
Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`
Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the closure, commutative and associate properties satisfied by * on Q.
Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under *. If so, examine the commutative and associative properties satisfied by * on M
Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = a – b + ab for a, b ∈ Q
Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a – b ∀ a, b ∈ Q
The identity element for the binary operation * defined on Q ~ {0} as a * b = `"ab"/2` ∀ a, b ∈ Q ~ {0} is ______.
A binary operation on a set has always the identity element.
Let * be a binary operation on set Q – {1} defind by a * b = a + b – ab : a, b ∈ Q – {1}. Then * is ____________.
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.
Let * be the binary operation on N given by a * b = HCF (a, b) where, a, b ∈ N. Find the value of 22 * 4.