Advertisements
Advertisements
Question
Construct the composition table for ×4 on set S = {0, 1, 2, 3}.
Solution
Here,
1
= 1
0
= 0
2
= 2
3
= 1
So, the composition table is as follows :
×4 | 0 | 1 | 2 | 3 |
0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 2 | 3 |
2 | 0 | 2 | 0 | 2 |
3 | 0 | 3 | 2 | 1 |
APPEARS IN
RELATED QUESTIONS
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On R, define * by a * b = ab2
For each binary operation * defined below, determine whether * is commutative or associative.
On Q, define a * b =
State whether the following statements are true or false. Justify.
If * is a commutative binary operation on N, then a * (b * c) = (c * b) * a
Determine whether the following operation define a binary operation on the given set or not : 'O' on Z defined by a O b = ab for all a, b ∈ Z.
The binary operation * : R × R → R is defined as a * b = 2a + b. Find (2 * 3) * 4.
Let A be any set containing more than one element. Let '*' be a binary operation on A defined by a * b = b for all a, b ∈ A Is '*' commutative or associative on A ?
Check the commutativity and associativity of the following binary operation '*' on Q defined by
Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?
On the set Q of all ration numbers if a binary operation * is defined by
If the binary operation * on the set Z is defined by a * b = a + b −5, the find the identity element with respect to *.
Let * be a binary operation on Q0 (set of non-zero rational numbers) defined by
Show that * is commutative as well as associative. Also, find its identity element if it exists.
Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :
Find the identity element in A ?
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by
Find the identity element in Q0.
On R − {1}, a binary operation * is defined by a * b = a + b − ab. Prove that * is commutative and associative. Find the identity element for * on R − {1}. Also, prove that every element of R − {1} is invertible.
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the identity element in A ?
For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.
Write the multiplication table for the set of integers modulo 5.
Define a binary operation on a set.
Define a commutative binary operation on a set.
Let * be a binary operation, on the set of all non-zero real numbers, given by
Write the value of x given by 2 * (x * 5) = 10.
Write the composition table for the binary operation ×5 (multiplication modulo 5) on the set S = {0, 1, 2, 3, 4}.
A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .
Let * be a binary operation on N defined by a * b = a + b + 10 for all a, b ∈ N. The identity element for * in N is _____________ .
For the binary operation * defined on R − {1} by the rule a * b = a + b + ab for all a, b ∈ R − {1}, the inverse of a is ________________ .
Let '*' be a binary operation on N defined by
a * b = 1.c.m. (a, b) for all a, b ∈ N
Find 2 * 4, 3 * 5, 1 * 6.
Consider the binary operation * defined by the following tables on set S = {a, b, c, d}.
* | a | b | c | d |
a | a | b | c | d |
b | b | a | d | c |
c | c | d | a | b |
d | d | c | b | a |
Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.
Let * be an operation defined as *: R × R ⟶ R, a * b = 2a + b, a, b ∈ R. Check if * is a binary operation. If yes, find if it is associative too.
Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:
* | a | b | c | d |
a | a | c | b | d |
b | d | a | b | c |
c | c | d | a | a |
d | d | b | a | c |
Is it commutative and associative?
Let M =
Let A be Q\{1}. Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the existence of an identity, the existence of inverse properties for the operation * on A
Choose the correct alternative:
If a * b =
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a2 + b2 ∀ a, b ∈ Q
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a + ab ∀ a, b ∈ Q
Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.
The identity element for the binary operation * defined on Q ~ {0} as a * b =
Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.
If * is a binary operation on the set of integers I defined by a * b = 3a + 4b - 2, then find the value of 4 * 5.
Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 *
A binary operation A × A → is said to be associative if:-