English

Let * Be a Binary Operation, on the Set of All Non-zero Real Numbers, Given by a ∗ B = a B 5 for All A, B ∈ R − { 0 } Write the Value of X Given by 2 * (X * 5) = 10. - Mathematics

Advertisements
Advertisements

Question

Let * be a binary operation, on the set of all non-zero real numbers, given by \[a * b = \frac{ab}{5} \text { for all a, b } \in R - \left\{ 0 \right\}\]

Write the value of x given by 2 * (x * 5) = 10.

Solution

\[\text { Given }: \hspace{0.167em} 2 * \left( x * 5 \right) = 10 \]
\[ { Here }, \]
\[2 * \left( \frac{5x}{5} \right) = 10\]
\[ \Rightarrow 2 * x = 10\]
\[ \Rightarrow \frac{2x}{5} = 10\]
\[ \Rightarrow x = \frac{10 \times 5}{2}\]
\[ \Rightarrow x = 25\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Binary Operations - Exercise 3.6 [Page 35]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 3 Binary Operations
Exercise 3.6 | Q 8 | Page 35

RELATED QUESTIONS

Let * be a binary operation, on the set of all non-zero real numbers, given by `a** b = (ab)/5` for all a,b∈ R-{0} that 2*(x*5)=10


LetA= R × R and * be a binary operation on A defined by (a, b) * (c, d) = (a+c, b+d)

Show that * is commutative and associative. Find the identity element for * on A. Also find the inverse of every element (a, b) ε A.


Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by a


Let*′ be the binary operation on the set {1, 2, 3, 4, 5} defined by *′ = H.C.F. of and b. Is the operation *′ same as the operation * defined in Exercise 4 above? Justify your answer.


Let * be the binary operation on given by a * = L.C.M. of and b. Find

(i) 5 * 7, 20 * 16

(ii) Is * commutative?

(iii) Is * associative?

(iv) Find the identity of * in N

(v) Which elements of are invertible for the operation *?


Consider a binary operation * on defined as a3 + b3. Choose the correct answer.

(A) Is * both associative and commutative?

(B) Is * commutative but not associative?

(C) Is * associative but not commutative?

(D) Is * neither commutative nor associative?


Determine whether the following operation define a binary operation on the given set or not :

\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\] 
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]


Determine whether the following operation define a binary operation on the given set or not : '⊙' on N defined by a ⊙ b= ab + ba for all a, b ∈ N


Let A be any set containing more than one element. Let '*' be a binary operation on A defined by a * b = b for all a, b ∈ A Is '*' commutative or associative on A ?


If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].


The binary operation * is defined by \[a * b = \frac{ab}{7}\] on the set Q of all rational numbers. Show that * is associative.


On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (ab) ⊙ (cd) = (acbc + d) for all (ab), (cd) ∈ R0 × R :

Find the identity element in A ?

 


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :

Find the invertible elements in A ?


For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.


Define identity element for a binary operation defined on a set.


A binary operation * is defined on the set R of all real numbers by the rule \[a * b = \sqrt{  a^2 + b^2} \text{for all a, b } \in R .\]

Write the identity element for * on R.


If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.


Let * be a binary operation on N given by a * b = HCF (a, b), a, b ∈ N. Write the value of 22 * 4.


Let * be a binary operation on set of integers I, defined by a * b = 2a + b − 3. Find the value of 3 * 4.


On the power set P of a non-empty set A, we define an operation ∆ by

\[X ∆ Y = \left( \overline{X} \cap Y \right) \cup \left( X \cap \overline{Y} \right)\]

Then which are of the following statements is true about ∆.


Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all ab ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .


The binary operation * defined on N by a * b = a + b + ab for all a, b N is ________________ .


Subtraction of integers is ___________________ .


Let * be a binary operation defined on Q+ by the rule

\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .


Determine whether * is a binary operation on the sets-given below.

a * b – a.|b| on R


Determine whether * is a binary operation on the sets-given below.

(a * b) = `"a"sqrt("b")` is binary on R


On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?


Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a + ab ∀ a, b ∈ Q


The identity element for the binary operation * defined on Q ~ {0} as a * b = `"ab"/2` ∀ a, b ∈ Q ~ {0} is ______.


Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.


The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.


The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.


Which of the following is not a binary operation on the indicated set?


a * b = `((a + b))/2` ∀a, b ∈ N is


Subtraction and division are not binary operation on.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×