English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Determine whether * is a binary operation on the sets-given below. (a * b) = abab is binary on R - Mathematics

Advertisements
Advertisements

Question

Determine whether * is a binary operation on the sets-given below.

(a * b) = `"a"sqrt("b")` is binary on R

Sum

Solution

No.

* is not a binary operation on R.

Reason: a, b ∈ R.

⇒ b can be -ve number also and the square root of a negative number is not real.

So `sqrt("b")` ∉ R even when b ∈ R.

So `sqrt("b")` ∉ R.

ie., a * b ∉ R.

* is not a binary operation on R.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Discrete Mathematics - Exercise 12.1 [Page 235]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 12 Discrete Mathematics
Exercise 12.1 | Q 1. (iii) | Page 235

RELATED QUESTIONS

Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.


Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) =  (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.

(iii)and hence write the inverse of elements (5, 3) and (1/2,4)


Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by = |− b|


Let A = × and * be the binary operation on A defined by  (ab) * (cd) = (cd)

Show that * is commutative and associative. Find the identity element for * on A, if any.


Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as

a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`

Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A

1) Find the identity element in A

2) Find the invertible elements of A.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On R, define by a*b = ab2

Here, Z+ denotes the set of all non-negative integers.


Check the commutativity and associativity of the following binary operation 'o' on Q defined by \[\text{a o b }= \frac{ab}{2}\] for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation  '*' on Z defined by a * b = a + b − ab for all a, b ∈ Z ?


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (ab) ⊙ (cd) = (acbc + d) for all (ab), (cd) ∈ R0 × R :

Find the identity element in A ?

 


Let A  \[=\] R  \[\times\] R and \[*\]  be a binary operation on defined by \[(a, b) * (c, d) = (a + c, b + d) .\] . Show that \[*\] is commutative and associative. Find the binary element for \[*\] on A, if any.


Let * be a binary operation, on the set of all non-zero real numbers, given by \[a * b = \frac{ab}{5} \text { for all a, b } \in R - \left\{ 0 \right\}\]

Write the value of x given by 2 * (x * 5) = 10.


Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.


If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .


The binary operation * is defined by a * b = a2 + b2 + ab + 1, then (2 * 3) * 2 is equal to ______________ .


An operation * is defined on the set Z of non-zero integers by \[a * b = \frac{a}{b}\]  for all ab ∈ Z. Then the property satisfied is _______________ .


In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?


If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then"  3 "*" (1/5 "*" 1/2)` is equal to ____________.


If * is a binary operation on the set of integers I defined by a * b = 3a + 4b - 2, then find the value of 4 * 5.


Let * be the binary operation on N given by a * b = HCF (a, b) where, a, b ∈ N. Find the value of 22 * 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×