Advertisements
Advertisements
Question
Determine whether * is a binary operation on the sets-given below.
(a * b) = `"a"sqrt("b")` is binary on R
Solution
No.
* is not a binary operation on R.
Reason: a, b ∈ R.
⇒ b can be -ve number also and the square root of a negative number is not real.
So `sqrt("b")` ∉ R even when b ∈ R.
So `sqrt("b")` ∉ R.
ie., a * b ∉ R.
* is not a binary operation on R.
APPEARS IN
RELATED QUESTIONS
Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.
Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) = (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.
(iii)and hence write the inverse of elements (5, 3) and (1/2,4)
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = |a − b|
Let A = N × N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d)
Show that * is commutative and associative. Find the identity element for * on A, if any.
Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as
a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`
Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.
Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A
1) Find the identity element in A
2) Find the invertible elements of A.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On R, define by a*b = ab2
Here, Z+ denotes the set of all non-negative integers.
Check the commutativity and associativity of the following binary operation 'o' on Q defined by \[\text{a o b }= \frac{ab}{2}\] for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on Z defined by a * b = a + b − ab for all a, b ∈ Z ?
Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :
Find the identity element in A ?
Let A \[=\] R \[\times\] R and \[*\] be a binary operation on A defined by \[(a, b) * (c, d) = (a + c, b + d) .\] . Show that \[*\] is commutative and associative. Find the binary element for \[*\] on A, if any.
Let * be a binary operation, on the set of all non-zero real numbers, given by \[a * b = \frac{ab}{5} \text { for all a, b } \in R - \left\{ 0 \right\}\]
Write the value of x given by 2 * (x * 5) = 10.
Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.
If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .
The binary operation * is defined by a * b = a2 + b2 + ab + 1, then (2 * 3) * 2 is equal to ______________ .
An operation * is defined on the set Z of non-zero integers by \[a * b = \frac{a}{b}\] for all a, b ∈ Z. Then the property satisfied is _______________ .
In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?
If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then" 3 "*" (1/5 "*" 1/2)` is equal to ____________.
If * is a binary operation on the set of integers I defined by a * b = 3a + 4b - 2, then find the value of 4 * 5.
Let * be the binary operation on N given by a * b = HCF (a, b) where, a, b ∈ N. Find the value of 22 * 4.