Advertisements
Advertisements
Question
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On R, define by a*b = ab2
Here, Z+ denotes the set of all non-negative integers.
Solution
\[\ a, b \in R\]
\[ \Rightarrow a, b^2 \in R\]
\[ \Rightarrow a b^2 \in R\]
\[ \Rightarrow a * b \in R\]
\[\text{Thus}, *\text{ is a binary operation on R }.\]
APPEARS IN
RELATED QUESTIONS
Determine whether or not of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = ab
For each binary operation * defined below, determine whether * is commutative or associative.
On Z+, define a * b = ab
Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.
(i) Compute (2 * 3) * 4 and 2 * (3 * 4)
(ii) Is * commutative?
(iii) Compute (2 * 3) * (4 * 5).
(Hint: use the following table)
* | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 1 | 2 | 1 |
3 | 1 | 1 | 3 | 1 | 1 |
4 | 1 | 2 | 1 | 4 | 1 |
5 | 1 | 1 | 1 | 1 | 5 |
Is * defined on the set {1, 2, 3, 4, 5} by a * b = L.C.M. of a and b a binary operation? Justify your answer.
Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as
a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`
Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b
Here, Z+ denotes the set of all non-negative integers.
Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?
Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?
Check the commutativity and associativity of the following binary operations '⊙' on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?
On the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a , b ∈ Z. Prove that * is not associative on Z.
On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.
Let * be a binary operation on Q0 (set of non-zero rational numbers) defined by \[a * b = \frac{ab}{5} \text{for all a, b} \in Q_0\]
Show that * is commutative as well as associative. Also, find its identity element if it exists.
Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :
Show that '⊙' is commutative and associative on A ?
Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :
Find the invertible elements in A ?
Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?
Let A \[=\] R \[\times\] R and \[*\] be a binary operation on A defined by \[(a, b) * (c, d) = (a + c, b + d) .\] . Show that \[*\] is commutative and associative. Find the binary element for \[*\] on A, if any.
Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.
Find the inverse of 5 under multiplication modulo 11 on Z11.
Write the identity element for the binary operation * on the set R0 of all non-zero real numbers by the rule \[a * b = \frac{ab}{2}\] for all a, b ∈ R0.
Define a binary operation on a set.
Define a commutative binary operation on a set.
For the binary operation multiplication modulo 5 (×5) defined on the set S = {1, 2, 3, 4}. Write the value of \[\left( 3 \times_5 4^{- 1} \right)^{- 1}.\]
If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .
If a binary operation * is defined on the set Z of integers as a * b = 3a − b, then the value of (2 * 3) * 4 is ___________ .
Which of the following is true ?
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ________________ .
The binary operation * is defined by a * b = a2 + b2 + ab + 1, then (2 * 3) * 2 is equal to ______________ .
Let * be a binary operation on Q+ defined by \[a * b = \frac{ab}{100} \text{ for all a, b } \in Q^+\] The inverse of 0.1 is _________________ .
Consider the binary operation * defined on Q − {1} by the rule
a * b = a + b − ab for all a, b ∈ Q − {1}
The identity element in Q − {1} is _______________ .
Determine whether * is a binary operation on the sets-given below.
a * b = min (a, b) on A = {1, 2, 3, 4, 5}
On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?
Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A
Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the closure, commutative and associate properties satisfied by * on Q.
Choose the correct alternative:
A binary operation on a set S is a function from
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = `"ab"/4` for a, b ∈ Q.
A binary operation on a set has always the identity element.