English

For Each Binary Operation * Defined Below, Determine Whether * is Commutative Or Associative. On Z+, Define A * B = Ab - Mathematics

Advertisements
Advertisements

Question

For each binary operation * defined below, determine whether * is commutative or associative.

On Z+, define ab

Solution

On Z+, * is defined by * b = ab.

It can be observed that:

`1 *2 = 1^2 = 1` and `2 * 1 = 2^1 = 2`

∴ 1 * 2 ≠ 2 * 1 ; where 1, 2 ∈ Z+

Therefore, the operation * is not commutative.

It can also be observed that:

`(2 * 3)*4 = 2^3 * 4 = 8 *4 = 8^4 = (2^3)^4 = 2^(12)`

`2 * (3 *4) = 2 * 3^4 = 2 * 81 = 2^81`

∴(2 * 3) * 4 ≠ 2 * (3 * 4) ; where 2, 3, 4 ∈ Z+

Therefore, the operation * is not associative.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations and Functions - Exercise 1.4 [Page 24]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 1 Relations and Functions
Exercise 1.4 | Q 2.5 | Page 24

RELATED QUESTIONS

Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by a


Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.

(i) Compute (2 * 3) * 4 and 2 * (3 * 4)

(ii) Is * commutative?

(iii) Compute (2 * 3) * (4 * 5).

(Hint: use the following table)

* 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

Let * be the binary operation on given by a * = L.C.M. of and b. Find

(i) 5 * 7, 20 * 16

(ii) Is * commutative?

(iii) Is * associative?

(iv) Find the identity of * in N

(v) Which elements of are invertible for the operation *?


State whether the following statements are true or false. Justify.

For an arbitrary binary operation * on a set N= ∀  N.


Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as

a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`

Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.


Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by

a ×6 b = Remainder when ab is divided by 6.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On R, define by a*b = ab2

Here, Z+ denotes the set of all non-negative integers.


Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.


Find the total number of binary operations on {ab}.


Let '*' be a binary operation on N defined by a * b = 1.c.m. (a, b) for all a, b ∈ N

Check the commutativity and associativity of '*' on N.


Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?


If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Show that '*' is both commutative and associative ?


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that '*' is both commutative and associative on Q − {−1}.


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (ab) ⊙ (cd) = (acbc + d) for all (ab), (cd) ∈ R0 × R :

Find the identity element in A ?

 


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by   \[a o b = \frac{ab}{2}, \text{for all a, b} \in Q_0\].

Show that 'o' is both commutative and associate ?


Construct the composition table for +5 on set S = {0, 1, 2, 3, 4}.


Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.


Consider the binary operation 'o' defined by the following tables on set S = {a, bcd}.

o  a b c d
a a a a a
b a b c d
c a c d b
d a d b c

Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


Let * be a binary operation, on the set of all non-zero real numbers, given by \[a * b = \frac{ab}{5} \text { for all a, b } \in R - \left\{ 0 \right\}\]

Write the value of x given by 2 * (x * 5) = 10.


If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .


On the power set P of a non-empty set A, we define an operation ∆ by

\[X ∆ Y = \left( \overline{X} \cap Y \right) \cup \left( X \cap \overline{Y} \right)\]

Then which are of the following statements is true about ∆.


Let * be a binary operation defined on set Q − {1} by the rule a * b = a + b − ab. Then, the identify element for * is ____________ .


Which of the following is true ?


The binary operation * defined on N by a * b = a + b + ab for all a, b N is ________________ .


The law a + b = b + a is called _________________ .


For the multiplication of matrices as a binary operation on the set of all matrices of the form \[\begin{bmatrix}a & b \\ - b & a\end{bmatrix}\] a, b ∈ R the inverse of \[\begin{bmatrix}2 & 3 \\ - 3 & 2\end{bmatrix}\] is ___________________ .


The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .


Determine whether * is a binary operation on the sets-given below.

(a * b) = `"a"sqrt("b")` is binary on R


Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:

* a b c d
a a c b d
b d a b c
c c d a a
d d b a c

Is it commutative and associative?


Let A be Q\{1}. Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the existence of an identity, the existence of inverse properties for the operation * on A


Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a + ab ∀ a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = (a – b)2 ∀ a, b ∈ Q


The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.


The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA  "a, b" in "Q" - {0}` is ____________.


Determine which of the following binary operation on the Set N are associate and commutaive both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×