English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Consider the binary operation * defined on the set A = {a, b, c, d} by the following table: * a b c d a a c b d b d a b c c c d a a d d b a c Is it commutative and associative? - Mathematics

Advertisements
Advertisements

Question

Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:

* a b c d
a a c b d
b d a b c
c c d a a
d d b a c

Is it commutative and associative?

Sum

Solution

From the table

b * c = b

c * b = d

So, the binary operation is not commutative.

To check whether the given operation is associative.

Let a, b, c ∈ A.

To prove the associative property we have to prove that a * (b * c) = (a * b) * c

From the table,

L.H.S: b * c = b

So, a * (b * c) = a * b = c  ........(1)

R.H.S: a * b = c

So, (a * b) * c = c * c = a  ........(2)

(1) ≠ (2).

So, a * (b * c) ≠ (a * b) * c

∴ The binary operation is not associative.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Discrete Mathematics - Exercise 12.1 [Page 236]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 12 Discrete Mathematics
Exercise 12.1 | Q 7 | Page 236

RELATED QUESTIONS

Is * defined on the set {1, 2, 3, 4, 5} by = L.C.M. of and a binary operation? Justify your answer.


Let * be a binary operation on N given by a * b = LCM (a, b) for all a, b ∈ N. Find 5 * 7.


Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?


Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?


Check the commutativity and associativity of the following binary operation 'o' on Q defined by \[\text{a o b }= \frac{ab}{2}\] for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?


The binary operation * is defined by \[a * b = \frac{ab}{7}\] on the set Q of all rational numbers. Show that * is associative.


Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :

Show that '⊙' is commutative and associative on A ?


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\] :

 Find the identity element in Q0.


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the identity element in A ?


Let * be a binary operation, on the set of all non-zero real numbers, given by \[a * b = \frac{ab}{5} \text { for all a, b } \in R - \left\{ 0 \right\}\]

Write the value of x given by 2 * (x * 5) = 10.


Let * be a binary operation on N given by a * b = HCF (a, b), a, b ∈ N. Write the value of 22 * 4.


If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .


The binary operation * is defined by a * b = a2 + b2 + ab + 1, then (2 * 3) * 2 is equal to ______________ .


Determine whether * is a binary operation on the sets-given below.

(a * b) = `"a"sqrt("b")` is binary on R


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b for a, b ∈ Q


The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.


A binary operation A × A → is said to be associative if:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×