Advertisements
Advertisements
प्रश्न
Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:
* | a | b | c | d |
a | a | c | b | d |
b | d | a | b | c |
c | c | d | a | a |
d | d | b | a | c |
Is it commutative and associative?
उत्तर
From the table
b * c = b
c * b = d
So, the binary operation is not commutative.
To check whether the given operation is associative.
Let a, b, c ∈ A.
To prove the associative property we have to prove that a * (b * c) = (a * b) * c
From the table,
L.H.S: b * c = b
So, a * (b * c) = a * b = c ........(1)
R.H.S: a * b = c
So, (a * b) * c = c * c = a ........(2)
(1) ≠ (2).
So, a * (b * c) ≠ (a * b) * c
∴ The binary operation is not associative.
APPEARS IN
संबंधित प्रश्न
Determine whether or not of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = ab
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = |a − b|
For each binary operation * defined below, determine whether * is commutative or associative.
On Z+, define a * b = ab
Let*′ be the binary operation on the set {1, 2, 3, 4, 5} defined by a *′ b = H.C.F. of a and b. Is the operation *′ same as the operation * defined in Exercise 4 above? Justify your answer.
Let * be a binary operation on N given by a * b = LCM (a, b) for all a, b ∈ N. Find 5 * 7.
Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?
Let S be the set of all real numbers except −1 and let '*' be an operation defined by a * b = a + b + ab for all a, b ∈ S. Determine whether '*' is a binary operation on S. If yes, check its commutativity and associativity. Also, solve the equation (2 * x) * 3 = 7.
Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?
Consider the binary operation 'o' defined by the following tables on set S = {a, b, c, d}.
o | a | b | c | d |
a | a | a | a | a |
b | a | b | c | d |
c | a | c | d | b |
d | a | d | b | c |
Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.
Define identity element for a binary operation defined on a set.
For the binary operation multiplication modulo 5 (×5) defined on the set S = {1, 2, 3, 4}. Write the value of \[\left( 3 \times_5 4^{- 1} \right)^{- 1}.\]
If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.
If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .
The number of binary operation that can be defined on a set of 2 elements is _________ .
Examine whether the operation *defined on R by a * b = ab + 1 is (i) a binary or not. (ii) if a binary operation, is it associative or not?
Fill in the following table so that the binary operation * on A = {a, b, c} is commutative.
* | a | b | c |
a | b | ||
b | c | b | a |
c | a | c |
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A v B) ∧ C
Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a2 + b2 ∀ a, b ∈ Q
A binary operation A × A → is said to be associative if:-