Advertisements
Advertisements
प्रश्न
Let S be the set of all real numbers except −1 and let '*' be an operation defined by a * b = a + b + ab for all a, b ∈ S. Determine whether '*' is a binary operation on S. If yes, check its commutativity and associativity. Also, solve the equation (2 * x) * 3 = 7.
उत्तर
Checking for binary operation:
\[\text{Let }a, b \in S . \text{Then}, \]
\[a, b \in \text{R and a} \neq - 1, b \neq - 1\]
\[a * b = a + b + ab\]
\[\text{We need to prove thata} + b + ab \in S . \left[ \text{For this we have to prove thata} + b + ab \in \text{ R and a } + b + ab \neq - 1 \right]\]
\[\text{Since a, b} \in R, a + b + ab \in R, \text{let us assume thata} + b + ab = - 1 . \]
\[a + b + ab + 1 = 0\]
\[a + ab + b + 1 = 0\]
\[a\left( 1 + b \right) + 1\left( 1 + b \right) = 0\]
\[\left( a + 1 \right)\left( b + 1 \right) = 0\]
\[a = - 1, b = - 1 \left[ \text{which is false} \right]\]
\[\text{Hence},a + b + ab \neq - 1\]
\[\text{Therefore},\]
\[a + b + ab \in S\]
Thus, * is a binary operation on S.
Commutativity:
\[\text{Let }a, b \in S . \text{Then}, \]
\[a * b = a + b + ab\]
\[ = b + a + ba\]
\[ = b * a \]
\[\text{Therefore},\]
\[a * b = b * a, \forall a, b \in S\]
Thus, * is commutative on N.
Associativity :
\[\text{Let a}, b, c \in S\]
\[a * \left( b * c \right) = a * \left( b + c + bc \right)\]
\[ = a + b + c + bc + a\left( b + c + bc \right)\]
\[ = a + b + c + bc + ab + ac + abc\]
\[\left( a * b \right) * c = \left( a + b + ab \right) * c\]
\[ = a + b + ab + c + \left( a + b + ab \right)c\]
\[ = a + b + ab + c + ac + bc + abc\]
\[\text{Therefore},\]
\[a * \left( b * c \right) = \left( a * b \right) * c, \forall a, b, c \in S\]
Thus, * is associative on S.
Now,
\[\text{Given}:\hspace{0.167em}\left( 2 * x \right) * 3 = 7\]
\[ \Rightarrow \left( 2 + x + 2x \right) * 3 = 7\]
\[ \Rightarrow \left( 2 + 3x \right) * 3 = 7\]
\[ \Rightarrow 2 + 3x + 3 + \left( 2 + 3x \right)3 = 7\]
\[ \Rightarrow 5 + 3x + 6 + 9x = 7\]
\[ \Rightarrow 12x + 11 = 7\]
\[ \Rightarrow 12x = - 4\]
\[ \Rightarrow x = \frac{- 4}{12}\]
\[ \Rightarrow x = \frac{- 1}{3}\]
APPEARS IN
संबंधित प्रश्न
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = |a − b|
State whether the following statements are true or false. Justify.
If * is a commutative binary operation on N, then a * (b * c) = (c * b) * a
Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * b= a − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.
Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by
a ×6 b = Remainder when ab is divided by 6.
Let '*' be a binary operation on N defined by a * b = 1.c.m. (a, b) for all a, b ∈ N
Check the commutativity and associativity of '*' on N.
Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all a, b ∈ Z ?
Check the commutativity and associativity of the following binary operation 'o' on Q defined by \[\text{a o b }= \frac{ab}{2}\] for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?
If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].
On the set Z of integers, if the binary operation * is defined by a * b = a + b + 2, then find the identity element.
Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Show that '*' is both commutative and associative ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the identity element in A ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the invertible element in A ?
For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.
Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as \[a * b = \begin{cases}a + b & ,\text{ if a + b} < 6 \\ a + b - 6 & , \text{if a + b} \geq 6\end{cases}\]
Show that 0 is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.
Write the identity element for the binary operation * on the set R0 of all non-zero real numbers by the rule \[a * b = \frac{ab}{2}\] for all a, b ∈ R0.
Write the total number of binary operations on a set consisting of two elements.
Define identity element for a binary operation defined on a set.
Let * be a binary operation on set of integers I, defined by a * b = 2a + b − 3. Find the value of 3 * 4.
If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .
Mark the correct alternative in the following question:-
For the binary operation * on Z defined by a * b = a + b + 1, the identity element is ________________ .
Q+ denote the set of all positive rational numbers. If the binary operation a ⊙ on Q+ is defined as \[a \odot = \frac{ab}{2}\] ,then the inverse of 3 is __________ .
On the set Q+ of all positive rational numbers a binary operation * is defined by \[a * b = \frac{ab}{2} \text{ for all, a, b }\in Q^+\]. The inverse of 8 is _________ .
Consider the binary operation * defined by the following tables on set S = {a, b, c, d}.
* | a | b | c | d |
a | a | b | c | d |
b | b | a | d | c |
c | c | d | a | b |
d | d | c | b | a |
Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.
Determine whether * is a binary operation on the sets-given below.
a * b – a.|b| on R
Determine whether * is a binary operation on the sets-given below.
(a * b) = `"a"sqrt("b")` is binary on R
On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?
Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.
Choose the correct alternative:
Subtraction is not a binary operation in
Choose the correct alternative:
In the set R of real numbers ‘*’ is defined as follows. Which one of the following is not a binary operation on R?
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = a – b + ab for a, b ∈ Q
Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.
Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.
Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.
Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.