मराठी

Let S Be the Set of All Real Numbers Except −1 and Let '*' Be an Operation Defined By A * B = A + B + Ab For All A, B ∈ S. Determine Whether '*' is a Binary Operation On S. - Mathematics

Advertisements
Advertisements

प्रश्न

Let S be the set of all real numbers except −1 and let '*' be an operation defined by a * b = a + b + ab for all ab ∈ S. Determine whether '*' is a binary operation on S. If yes, check its commutativity and associativity. Also, solve the equation (2 * x) * 3 = 7.

बेरीज

उत्तर

Checking for binary operation:

\[\text{Let }a, b \in S . \text{Then}, \]

\[a, b \in \text{R and a} \neq - 1, b \neq - 1\]

\[a * b = a + b + ab\]

\[\text{We need to prove thata} + b + ab \in S . \left[ \text{For this we have to prove thata} + b + ab \in \text{ R and a } + b + ab \neq - 1 \right]\]

\[\text{Since a, b} \in R, a + b + ab \in R, \text{let us assume thata} + b + ab = - 1 . \]

\[a + b + ab + 1 = 0\]

\[a + ab + b + 1 = 0\]

\[a\left( 1 + b \right) + 1\left( 1 + b \right) = 0\]

\[\left( a + 1 \right)\left( b + 1 \right) = 0\]

\[a = - 1, b = - 1 \left[ \text{which is false} \right]\]

\[\text{Hence},a + b + ab \neq - 1\]

\[\text{Therefore},\]

\[a + b + ab \in S\]

Thus, * is a binary operation on S.

Commutativity:

\[\text{Let }a, b \in S . \text{Then}, \]

\[a * b = a + b + ab\]

        \[ = b + a + ba\]

        \[ = b * a \]

\[\text{Therefore},\]

\[a * b = b * a, \forall a, b \in S\]

Thus, * is commutative on N.

Associativity :

\[\text{Let a}, b, c \in S\]

\[a * \left( b * c \right) = a * \left( b + c + bc \right)\]

\[ = a + b + c + bc + a\left( b + c + bc \right)\]

\[ = a + b + c + bc + ab + ac + abc\]

\[\left( a * b \right) * c = \left( a + b + ab \right) * c\]

\[ = a + b + ab + c + \left( a + b + ab \right)c\]

\[ = a + b + ab + c + ac + bc + abc\]

\[\text{Therefore},\]

\[a * \left( b * c \right) = \left( a * b \right) * c, \forall a, b, c \in S\]

Thus, * is associative on S.

Now,

\[\text{Given}:\hspace{0.167em}\left( 2 * x \right) * 3 = 7\]

\[ \Rightarrow \left( 2 + x + 2x \right) * 3 = 7\]

\[ \Rightarrow \left( 2 + 3x \right) * 3 = 7\]

\[ \Rightarrow 2 + 3x + 3 + \left( 2 + 3x \right)3 = 7\]

\[ \Rightarrow 5 + 3x + 6 + 9x = 7\]

\[ \Rightarrow 12x + 11 = 7\]

\[ \Rightarrow 12x = - 4\]

\[ \Rightarrow x = \frac{- 4}{12}\]

\[ \Rightarrow x = \frac{- 1}{3}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Binary Operations - Exercise 3.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 3 Binary Operations
Exercise 3.2 | Q 8 | पृष्ठ १२

संबंधित प्रश्‍न

Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by = |− b|


State whether the following statements are true or false. Justify.

If * is a commutative binary operation on N, then * (c) = (b) * a


Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * ba − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.


Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by

a ×6 b = Remainder when ab is divided by 6.


Let '*' be a binary operation on N defined by a * b = 1.c.m. (a, b) for all a, b ∈ N

Check the commutativity and associativity of '*' on N.


Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all ab ∈ Z ?


Check the commutativity and associativity of the following binary operation 'o' on Q defined by \[\text{a o b }= \frac{ab}{2}\] for all a, b ∈ Q ?


 Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?


If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].


On the set Z of integers, if the binary operation * is defined by a * b = a + b + 2, then find the identity element.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Show that '*' is both commutative and associative ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the identity element in A ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the invertible element in A ?


For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.


Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as \[a * b = \begin{cases}a + b & ,\text{ if a  + b} < 6 \\ a + b - 6 & , \text{if a + b} \geq 6\end{cases}\]

Show that 0 is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Write the identity element for the binary operation * on the set R0 of all non-zero real numbers by the rule \[a * b = \frac{ab}{2}\] for all ab ∈ R0.


Write the total number of binary operations on a set consisting of two elements.


Define identity element for a binary operation defined on a set.


Let * be a binary operation on set of integers I, defined by a * b = 2a + b − 3. Find the value of 3 * 4.


If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .


Mark the correct alternative in the following question:-

For the binary operation * on Z defined by a * b = a + b + 1, the identity element is ________________ .


Q+ denote the set of all positive rational numbers. If the binary operation a ⊙ on Q+ is defined as \[a \odot = \frac{ab}{2}\] ,then the inverse of 3 is __________ .


On the set Q+ of all positive rational numbers a binary operation * is defined by \[a * b = \frac{ab}{2} \text{ for all, a, b }\in Q^+\]. The inverse of 8 is _________ .


Consider the binary operation * defined by the following tables on set S = {a, bcd}.

a b c  d
a a b c d
b b a d c
c c d a b
d d c b a


Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


Determine whether * is a binary operation on the sets-given below.

a * b – a.|b| on R


Determine whether * is a binary operation on the sets-given below.

(a * b) = `"a"sqrt("b")` is binary on R


On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?


Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.


Choose the correct alternative:

Subtraction is not a binary operation in


Choose the correct alternative:

In the set R of real numbers ‘*’ is defined as follows. Which one of the following is not a binary operation on R?


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b + ab for a, b ∈ Q


Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.


Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.


The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.


Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.


Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×