मराठी

Discuss the Commutativity and Associativity of Binary Operation '*' Defined on a = Q − {1} by the Rule A * B= A − B + Ab for All, A, B ∊ A. Also Find the Identity Element of * in a and Hence Find the Invertible Elements of A. - Mathematics

Advertisements
Advertisements

प्रश्न

Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * ba − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.

उत्तर

Given, * is a binary operation on Q  {1} defined by a*a- ab

Commutativity:

For any a, b∈A, we have 

a * b = a − b + ab and b *a = b − a + ba

Since, a − b + ab ≠ b − a + ab

∴ a * b ≠ b * a

So, * is not commutative on A

Associativity:

Let a, b, c ∈ A
(a * b) *c = (a − b + ab) * c

⇒(a * b) * c = (a − b + ab) − c + (a − b + ab)c

⇒(a * b) * c = a − b + ab − c + ac − bc + abc

a * (b * c) = a * (b − c + bc)

⇒a * (b * c) = a − (b − c + bc) + a(b − c + bc)

⇒a * (b * c) = a − b + c − bc + ab − ac + abc

⇒ (a * b) * c ≠ a *(b * c)

So, * is not associative on A

Identity Element

Let e be the identity element in A, then

a * e = a = e * a          ∀a ∈ Q − {1}

⇒ a − e + ae = a

⇒(a − 1)e = 0

⇒e = 0 (As a ≠ 1)

So, 0 is the identity element in A.

Inverse of an Element

Let a be an arbitrary element of A and b be the inverse of a. Then,

a * b = e = b * a

⇒ a * b = e

⇒a − b + ab = 0   [∵ e = 0]

⇒a = b(1 − a)

`=>b= a/(1-a)`

Since, ∈ Q - 1

So, every element of A is invertible.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) Delhi Set 1

संबंधित प्रश्‍न

Let * be a binary operation, on the set of all non-zero real numbers, given by `a** b = (ab)/5` for all a,b∈ R-{0} that 2*(x*5)=10


Determine whether or not of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by ab


For each binary operation * defined below, determine whether * is commutative or associative.

On Z, define − b


For each binary operation * defined below, determine whether * is commutative or associative.

On Z+, define = 2ab


Let * be the binary operation on given by a * = L.C.M. of and b. Find

(i) 5 * 7, 20 * 16

(ii) Is * commutative?

(iii) Is * associative?

(iv) Find the identity of * in N

(v) Which elements of are invertible for the operation *?


Let S be the set of all rational numbers of the form \[\frac{m}{n}\] , where m ∈ Z and n = 1, 2, 3. Prove that * on S defined by a * b = ab is not a binary operation.


Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?


Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?


 Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?


If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].


On Q, the set of all rational numbers, * is defined by \[a * b = \frac{a - b}{2}\] , shown that * is no associative ?


Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:

Prove that * is a binary operation on S ?


Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:

Prove that * is commutative as well as associative ?


Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.


On the set Z of integers, if the binary operation * is defined by a * b = a + b + 2, then find the identity element.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the invertible elements in Z ?


Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.


Define an associative binary operation on a set.


Define identity element for a binary operation defined on a set.


Let +6 (addition modulo 6) be a binary operation on S = {0, 1, 2, 3, 4, 5}. Write the value of \[2 +_6 4^{- 1} +_6 3^{- 1} .\]


If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.


The binary operation * defined on N by a * b = a + b + ab for all a, b N is ________________ .


Let * be a binary operation defined on Q+ by the rule

\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .


Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:

* a b c d
a a c b d
b d a b c
c c d a a
d d b a c

Is it commutative and associative?


Choose the correct alternative:

In the set R of real numbers ‘*’ is defined as follows. Which one of the following is not a binary operation on R?


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b + ab for a, b ∈ Q


The identity element for the binary operation * defined on Q ~ {0} as a * b = `"ab"/2` ∀ a, b ∈ Q ~ {0} is ______.


The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.


Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×