मराठी

Let * Be a Binary Operation Defined on Q+ by the Rule a ∗ B = a B 3 for All A, B ∈ Q + the Inverse of 4 * 6 is - Mathematics

Advertisements
Advertisements

प्रश्न

Let * be a binary operation defined on Q+ by the rule

\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .

पर्याय

  • `9/8`

  • `2/3`

  • `3/2`

  • none of these

MCQ

उत्तर

\[\frac{9}{8}\] 

Let e be the identity element in Q+ with respect to * such that

\[a * e = a = e * a, \forall a \in Q^+ \]
\[ a * e = a \text{ and }e * a = a, \forall a \in Q^+ \]
\[\text{ Then }, \]
\[\frac{ae}{3} = a \text{ and }\frac{ea}{3} = a, \forall a \in Q^+ \]
\[ \Rightarrow e = 3 , \forall a \in Q^+\]

Thus, 3 is the identity element in Q+ with respect to *. 

\[\text{ Let }a \in Q^+ \text{ and }b \in Q^+ \text{ be the inverse of a . Then },\]
\[a * b = e = b * a\]
\[a * b = e \text{ and }b * a = e\]
\[ \therefore \frac{ab}{3} = 3 \text{ and }\frac{ba}{3}=3\]
\[b = \frac{9}{a} \in Q^+ \]
\[\text{ Thus },\frac{9}{a} \text{ is the inverse of a } \in Q^+ . \]

\[\text{ Given } : a * b = \frac{ab}{3}\]
\[4 * 6 = \frac{4 \times 6}{3} = 8\]
\[Now,\]
\[ a^{- 1} = \frac{9}{a}\]
\[ \left( 4 * 6 \right)^{- 1} = 8^{- 1} \]
\[ = \frac{9}{8}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Binary Operations - Exercise 3.7 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 3 Binary Operations
Exercise 3.7 | Q 27 | पृष्ठ ३९

संबंधित प्रश्‍न

For each binary operation * defined below, determine whether * is commutative or associative.

On Z+, define ab


Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.

(i) Compute (2 * 3) * 4 and 2 * (3 * 4)

(ii) Is * commutative?

(iii) Compute (2 * 3) * (4 * 5).

(Hint: use the following table)

* 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

Find which of the operations given above has identity.


Let A = × and * be the binary operation on A defined by  (ab) * (cd) = (cd)

Show that * is commutative and associative. Find the identity element for * on A, if any.


State whether the following statements are true or false. Justify.

For an arbitrary binary operation * on a set N= ∀  N.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On R, define * by a * b = a + 4b2

Here, Z+ denotes the set of all non-negative integers.


Let * be a binary operation on the set I of integers, defined by a * b = 2a + b − 3. Find the value of 3 * 4.


Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all ab ∈ Z ?


Check the commutativity and associativity of the following binary operations '*'. on Q defined by a * b = a − b for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = a + ab for all ab ∈ Q ?


Check the commutativity and associativity of the following binary operation  '*' on R defined by a * b = a + b − 7 for all ab ∈ R ?


On Q, the set of all rational numbers, * is defined by \[a * b = \frac{a - b}{2}\] , shown that * is no associative ?


The binary operation * is defined by \[a * b = \frac{ab}{7}\] on the set Q of all rational numbers. Show that * is associative.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the invertible elements in Z ?


Let * be a binary operation on Q0 (set of non-zero rational numbers) defined by \[a * b = \frac{ab}{5} \text{for all a, b} \in Q_0\]

 Show that * is commutative as well as associative. Also, find its identity element if it exists.


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\] :

 Find the identity element in Q0.


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the identity element in A ?


Find the inverse of 5 under multiplication modulo 11 on Z11.


Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as \[a * b = \begin{cases}a + b & ,\text{ if a  + b} < 6 \\ a + b - 6 & , \text{if a + b} \geq 6\end{cases}\]

Show that 0 is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Write the identity element for the binary operation * on the set R0 of all non-zero real numbers by the rule \[a * b = \frac{ab}{2}\] for all ab ∈ R0.


For the binary operation multiplication modulo 10 (×10) defined on the set S = {1, 3, 7, 9}, write the inverse of 3.


A binary operation * is defined on the set R of all real numbers by the rule \[a * b = \sqrt{  a^2 + b^2} \text{for all a, b } \in R .\]

Write the identity element for * on R.


Let * be a binary operation on set of integers I, defined by a * b = 2a + b − 3. Find the value of 3 * 4.


If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .


If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .


Let * be a binary operation on N defined by a * b = a + b + 10 for all ab ∈ N. The identity element for * in N is _____________ .


The number of binary operation that can be defined on a set of 2 elements is _________ .


Consider the binary operation * defined by the following tables on set S = {a, bcd}.

a b c  d
a a b c d
b b a d c
c c d a b
d d c b a


Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


Determine whether * is a binary operation on the sets-given below.

a * b = min (a, b) on A = {1, 2, 3, 4, 5}


Determine whether * is a binary operation on the sets-given below.

(a * b) = `"a"sqrt("b")` is binary on R


Choose the correct alternative:

Subtraction is not a binary operation in


Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?


A binary operation on a set has always the identity element.


If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then"  3 "*" (1/5 "*" 1/2)` is equal to ____________.


The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA  "a, b" in "Q" - {0}` is ____________.


Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×