मराठी

Find the Inverse of 5 Under Multiplication Modulo 11 on Z11. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the inverse of 5 under multiplication modulo 11 on Z11.

बेरीज

उत्तर

\[Z_{11} = \left\{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \right\}\]
\[\text{Multiplication modulo 11 is defined as follows}:\]
\[\text{For a, b }\in Z_{11} , \]
\[a \times_{11} \text{b is the remainder when }a\times b \text { is divided by }11.\]

Here,
1\[\times_{11}\] 1 = Remainder obtained by dividing 1 \[\times\] 1 by 11
             = 1

3 \[\times_{11}\] 4 = Remainder obtained by dividing 3 \[\times\]  4 by 11
             = 1

4 \[\times_{11}\]  5 = Remainder obtained by dividing 4

\[\times\] 5 by 11
             = 9
So, the composition table is as follows:

×11 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 1 3 5 7 9
3 3 6 9 1 4 7 10 2 5 8
4 4 8 1 5 9 2 6 10 3 7
5 5 10 4 9 3 8 2 7 1 6
6 6 1 7 2 8 3 9 4 10 5
7 7 3 10 6 2 9 5 1 8 4
8 8 5 2 10 7 4 1 9 6 3
9 9 7 5 3 1 10 8 6 4 2
10 10 9 8/ 7 6 5 4 3 2 1

We observe that the first row of the composition table is same as the top-most row.
So, the identity element is 1.

Also,

 \[5 \times_{11} 9 = 1\]
\[\text{Hence}, 5^{- 1} = 9\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Binary Operations - Exercise 3.5 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 3 Binary Operations
Exercise 3.5 | Q 7 | पृष्ठ ३३

संबंधित प्रश्‍न

Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) =  (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.

(iii)and hence write the inverse of elements (5, 3) and (1/2,4)


Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by = min {ab}. Write the operation table of the operation∨.


Find which of the operations given above has identity.


Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by

a ×6 b = Remainder when ab is divided by 6.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b

Here, Z+ denotes the set of all non-negative integers.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On R, define by a*b = ab2

Here, Z+ denotes the set of all non-negative integers.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this. 

On Z+ define * by a * b = |a − b|

Here, Z+ denotes the set of all non-negative integers.


Find the total number of binary operations on {ab}.


Prove that the operation * on the set

\[M = \left\{ \begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix}; a, b \in R - \left\{ 0 \right\} \right\}\] defined by A * B = AB is a binary operation.


The binary operation * : R × R → R is defined as a * b = 2a + b. Find (2 * 3) * 4.


Let * be a binary operation on N given by a * b = LCM (a, b) for all a, b ∈ N. Find 5 * 7.


Let '*' be a binary operation on N defined by a * b = 1.c.m. (a, b) for all a, b ∈ N

Check the commutativity and associativity of '*' on N.


Check the commutativity and associativity of the following binary operation 'o' on Q defined by \[\text{a o b }= \frac{ab}{2}\] for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation  '*' on R defined by a * b = a + b − 7 for all ab ∈ R ?


Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?


The binary operation * is defined by \[a * b = \frac{ab}{7}\] on the set Q of all rational numbers. Show that * is associative.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the identity element in Z ?


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (ab) ⊙ (cd) = (acbc + d) for all (ab), (cd) ∈ R0 × R :

Find the identity element in A ?

 


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Show that '*' is both commutative and associative on A ?


For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.


On the set Z of all integers a binary operation * is defined by a * b = a + b + 2 for all ab ∈ Z. Write the inverse of 4.


Define a binary operation on a set.


Let +6 (addition modulo 6) be a binary operation on S = {0, 1, 2, 3, 4, 5}. Write the value of \[2 +_6 4^{- 1} +_6 3^{- 1} .\]


If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.


Let * be a binary operation on N given by a * b = HCF (a, b), a, b ∈ N. Write the value of 22 * 4.


Let * be a binary operation on set of integers I, defined by a * b = 2a + b − 3. Find the value of 3 * 4.


If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .


An operation * is defined on the set Z of non-zero integers by \[a * b = \frac{a}{b}\]  for all ab ∈ Z. Then the property satisfied is _______________ .


For the binary operation * defined on R − {1} by the rule a * b = a + b + ab for all a, b ∈ R − {1}, the inverse of a is ________________ .


If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A ∧ B) v C


Let R be the set of real numbers and * be the binary operation defined on R as a * b = a + b – ab ∀ a, b ∈ R. Then, the identity element with respect to the binary operation * is ______.


Let * be a binary operation on set Q – {1} defind by a * b = a + b – ab : a, b ∈ Q – {1}. Then * is ____________.


Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.


Let * be the binary operation on N given by a * b = HCF (a, b) where, a, b ∈ N. Find the value of 22 * 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×