मराठी

Let R0 Denote the Set of All Non-zero Real Numbers and Let a = R0 × R0. If '*' is a Binary Operation on a Defined by (A, B) * (C, D) = (Ac, Bd) for All (A, B), (C, D) ∈ a : Show that '*' is Both - Mathematics

Advertisements
Advertisements

प्रश्न

Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Show that '*' is both commutative and associative on A ?

बेरीज

उत्तर

\[\text{ Commutativity }: \] 
\[ \text{ Let } \left( a, b \right) \text{ & }\left( c, d \right) \in A \forall a, b, c, d \in R_0 . \text{ Then }, \] 
\[\left( a, b \right) * \left( c, d \right) = \left( ac, bd \right)\] 
                      \[ = \left( ca, db \right)\] 
                      \[ = \left( c, d \right) * \left( a, b \right)\] 
\[ \therefore \left( a, b \right) * \left( c, d \right) = \left( c, d \right) * \left( a, b \right)\] 
\[\text{Thus, * is commutaive on A} . \] 

\[\text{ Associativity }: \] 

\[\text{ Let } \left( a, b \right), \left( c, d \right) \text{&}\left( e, f \right) \in A \forall a, b, c, d, e, f \in R_{0,} . \text{ Then }, \] 
\[\left( a, b \right) * \left( \left( c, d \right) * \left( e, f \right) \right) = \left( a, b \right) * \left( ce, df \right)\] 
                                       \[ = \left( ace, bdf \right)\] 
\[\left( \left( a, b \right) * \left( c, d \right) \right) * \left( e, f \right) = \left( ac, bd \right) * \left( e, f \right)\] 
                                        \[ = \left( ace, bdf \right)\] 
\[ \therefore \left( a, b \right) * \left( \left( c, d \right) * \left( e, f \right) \right) = \left( \left( a, b \right) * \left( c, d \right) \right) * \left( e, f \right)\] 
\[\text{ Thus, * is associative on A } . \] 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Binary Operations - Exercise 3.4 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 3 Binary Operations
Exercise 3.4 | Q 7.1 | पृष्ठ २५

संबंधित प्रश्‍न

State whether the following statements are true or false. Justify.

For an arbitrary binary operation * on a set N= ∀  N.


Given a non-empty set X, consider the binary operation *: P(X) × P(X) → P(X) given by A * B = A ∩ B &mnForE; AB in P(X) is the power set of X. Show that is the identity element for this operation and is the only invertible element in P(X) with respect to the operation*.


Consider the binary operations*: ×→ and o: R × R → defined as a * b = |a - b| and ab = a, &mnForE;ab ∈ R. Show that * is commutative but not associative, o is associative but not commutative. Further, show that &mnForE;abc ∈ Ra*(b o c) = (ab) o (a * c). [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.


Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A

1) Find the identity element in A

2) Find the invertible elements of A.


Determine whether the following operation define a binary operation on the given set or not : 'O' on Z defined by a O b = ab for all a, b ∈ Z.


Determine whether the following operation define a binary operation on the given set or not :

\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\] 
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On R, define by a*b = ab2

Here, Z+ denotes the set of all non-negative integers.


Let S = {abc}. Find the total number of binary operations on S.


Check the commutativity and associativity of the following binary operation '*' on N, defined by a * b = ab for all ab ∈ N ?


Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative ?


On Z, the set of all integers, a binary operation * is defined by a * b = a + 3b − 4. Prove that * is neither commutative nor associative on Z.


On the set Z of integers, if the binary operation * is defined by a * b = a + b + 2, then find the identity element.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Show that '*' is both commutative and associative ?


For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.


If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .


If G is the set of all matrices of the form

\[\begin{bmatrix}x & x \\ x & x\end{bmatrix}, \text{where x } \in R - \left\{ 0 \right\}\] then the identity element with respect to the multiplication of matrices as binary operation, is ______________ .


Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all ab ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .


Let * be a binary operation defined on set Q − {1} by the rule a * b = a + b − ab. Then, the identify element for * is ____________ .


Which of the following is true ?


The binary operation * is defined by a * b = a2 + b2 + ab + 1, then (2 * 3) * 2 is equal to ______________ .


Let * be a binary operation on R defined by a * b = ab + 1. Then, * is _________________ .


Subtraction of integers is ___________________ .


Let * be a binary operation on Q+ defined by \[a * b = \frac{ab}{100} \text{ for all a, b } \in Q^+\] The inverse of 0.1 is _________________ .


The number of binary operation that can be defined on a set of 2 elements is _________ .


Let * be an operation defined as *: R × R ⟶ R, a * b = 2a + b, a, b ∈ R. Check if * is a binary operation. If yes, find if it is associative too.


Determine whether * is a binary operation on the sets-given below.

a * b = min (a, b) on A = {1, 2, 3, 4, 5}


Determine whether * is a binary operation on the sets-given below.

(a * b) = `"a"sqrt("b")` is binary on R


Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the closure, commutative and associate properties satisfied by * on Q.


Fill in the following table so that the binary operation * on A = {a, b, c} is commutative.

* a b c
a b    
b c b a
c a   c

Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:

* a b c d
a a c b d
b d a b c
c c d a a
d d b a c

Is it commutative and associative?


Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A


Choose the correct alternative:

Which one of the following is a binary operation on N?


In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = ab2 for a, b ∈ Q


Let R be the set of real numbers and * be the binary operation defined on R as a * b = a + b – ab ∀ a, b ∈ R. Then, the identity element with respect to the binary operation * is ______.


Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.


Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.


Subtraction and division are not binary operation on.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×