मराठी

Let * Be a Binary Operation On R Defined By A * B = Ab + 1. Then, * is - Mathematics

Advertisements
Advertisements

प्रश्न

Let * be a binary operation on R defined by a * b = ab + 1. Then, * is _________________ .

पर्याय

  • commutative but not associative

  • associative but not commutative

  • neither commutative nor associative

  • both commutative and associative

MCQ

उत्तर

commutative but not associative
Commutativity: 

\[\text { Let } a, b \in R\]
\[a * b = ab + 1\]
       \[ = ba + 1\]
       \[ = b * a\]
\[\text { Therefore },\]
\[a * b = b * a, \forall a, b \in R\]

Therefore, * is commutative on R.

Associativity:

\[\text{ Let }a, b, c \in R\]
\[a * \left( b * c \right) = a * \left( bc + 1 \right)\]
                    \[ = a\left( bc + 1 \right) + 1\]
                    \[ = abc + a + 1\]
\[\left( a * b \right) * c = \left( ab + 1 \right) * c\]
                    \[ = \left( ab + 1 \right)c + 1\]
                     \[ = abc + c + 1\]
\[\therefore a * \left( b * c \right) \neq \left( a * b \right) * c\]
\[\text{ For example }:a=1,b = 2 \text{ and } c = 3 \left[ \text{ which belong to R } \right]\]
\[\text{ Now }, \]
\[1 * \left( 2 * 3 \right) = 1 * \left( 6 + 1 \right)\]
                   \[ = 1 * 7\]
                   \[ = 7 + 1\]
                   \[ = 8\]
\[\left( 1 * 2 \right) * 3 = \left( 2 + 1 \right) * 3\]
                   \[ = 3 * 3\]
                    \[ = 9 + 1\]
                    \[ = 10\]
\[ \Rightarrow 1 * \left( 2 * 3 \right) \neq \left( 1 * 2 \right) * 3\]
\[\text { Therefore }, \exists a=1,b = 2 \text{ and } c = 3 \text{ which belong to R such that a } * \left( b * c \right) \neq \left( a * b \right) * c\]

Hence, * is not associative on R.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Binary Operations - Exercise 3.7 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 3 Binary Operations
Exercise 3.7 | Q 15 | पृष्ठ ३८

संबंधित प्रश्‍न

Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.


For each binary operation * defined below, determine whether * is commutative or associative.

On Z+, define = 2ab


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this. 

On Z+ define * by a * b = |a − b|

Here, Z+ denotes the set of all non-negative integers.


Let S = {abc}. Find the total number of binary operations on S.


Find the total number of binary operations on {ab}.


Let S be the set of all rational numbers of the form \[\frac{m}{n}\] , where m ∈ Z and n = 1, 2, 3. Prove that * on S defined by a * b = ab is not a binary operation.


Check the commutativity and associativity of the following binary operations '⊙' on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q ?


 Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on N, defined by a * b = ab for all ab ∈ N ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Show that '*' is both commutative and associative on A ?


Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?


Construct the composition table for ×4 on set S = {0, 1, 2, 3}.


Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.


Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.


For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.


Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as \[a * b = \begin{cases}a + b & ,\text{ if a  + b} < 6 \\ a + b - 6 & , \text{if a + b} \geq 6\end{cases}\]

Show that 0 is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Define a binary operation on a set.


Define an associative binary operation on a set.


Write the total number of binary operations on a set consisting of two elements.


Write the composition table for the binary operation ×5 (multiplication modulo 5) on the set S = {0, 1, 2, 3, 4}.


Let * be a binary operation on set of integers I, defined by a * b = 2a + b − 3. Find the value of 3 * 4.


If a binary operation * is defined on the set Z of integers as a * b = 3a − b, then the value of (2 * 3) * 4 is ___________ .


Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all ab ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .


If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .


Subtraction of integers is ___________________ .


The law a + b = b + a is called _________________ .


Let * be a binary operation on Q+ defined by \[a * b = \frac{ab}{100} \text{ for all a, b } \in Q^+\] The inverse of 0.1 is _________________ .


Let * be a binary operation defined on Q+ by the rule

\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .


Choose the correct alternative:

Which one of the following is a binary operation on N?


Choose the correct alternative:

In the set R of real numbers ‘*’ is defined as follows. Which one of the following is not a binary operation on R?


In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = ab2 for a, b ∈ Q


Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a2 + b2 ∀ a, b ∈ Q


If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then"  3 "*" (1/5 "*" 1/2)` is equal to ____________.


Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.


a * b = `((a + b))/2` ∀a, b ∈ N is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×