हिंदी

Let * Be a Binary Operation On R Defined By A * B = Ab + 1. Then, * is - Mathematics

Advertisements
Advertisements

प्रश्न

Let * be a binary operation on R defined by a * b = ab + 1. Then, * is _________________ .

विकल्प

  • commutative but not associative

  • associative but not commutative

  • neither commutative nor associative

  • both commutative and associative

MCQ

उत्तर

commutative but not associative
Commutativity: 

\[\text { Let } a, b \in R\]
\[a * b = ab + 1\]
       \[ = ba + 1\]
       \[ = b * a\]
\[\text { Therefore },\]
\[a * b = b * a, \forall a, b \in R\]

Therefore, * is commutative on R.

Associativity:

\[\text{ Let }a, b, c \in R\]
\[a * \left( b * c \right) = a * \left( bc + 1 \right)\]
                    \[ = a\left( bc + 1 \right) + 1\]
                    \[ = abc + a + 1\]
\[\left( a * b \right) * c = \left( ab + 1 \right) * c\]
                    \[ = \left( ab + 1 \right)c + 1\]
                     \[ = abc + c + 1\]
\[\therefore a * \left( b * c \right) \neq \left( a * b \right) * c\]
\[\text{ For example }:a=1,b = 2 \text{ and } c = 3 \left[ \text{ which belong to R } \right]\]
\[\text{ Now }, \]
\[1 * \left( 2 * 3 \right) = 1 * \left( 6 + 1 \right)\]
                   \[ = 1 * 7\]
                   \[ = 7 + 1\]
                   \[ = 8\]
\[\left( 1 * 2 \right) * 3 = \left( 2 + 1 \right) * 3\]
                   \[ = 3 * 3\]
                    \[ = 9 + 1\]
                    \[ = 10\]
\[ \Rightarrow 1 * \left( 2 * 3 \right) \neq \left( 1 * 2 \right) * 3\]
\[\text { Therefore }, \exists a=1,b = 2 \text{ and } c = 3 \text{ which belong to R such that a } * \left( b * c \right) \neq \left( a * b \right) * c\]

Hence, * is not associative on R.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Binary Operations - Exercise 3.7 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 3 Binary Operations
Exercise 3.7 | Q 15 | पृष्ठ ३८

संबंधित प्रश्न

Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) =  (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.

(iii)and hence write the inverse of elements (5, 3) and (1/2,4)


For each binary operation * defined below, determine whether * is commutative or associative.

On − {−1}, define `a*b = a/(b+1)`


Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by = min {ab}. Write the operation table of the operation∨.


Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.

(i) Compute (2 * 3) * 4 and 2 * (3 * 4)

(ii) Is * commutative?

(iii) Compute (2 * 3) * (4 * 5).

(Hint: use the following table)

* 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

Given a non-empty set X, let *: P(X) × P(X) → P(X) be defined as A * B = (A − B) ∪ (B −A), &mnForE; AB ∈ P(X). Show that the empty set Φ is the identity for the operation * and all the elements A of P(X) are invertible with A−1 = A. (Hint: (A − Φ) ∪ (Φ − A) = Aand (A − A) ∪ (A − A) = A * A = Φ).


Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A

1) Find the identity element in A

2) Find the invertible elements of A.


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.


Determine whether the following operation define a binary operation on the given set or not :

\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\] 
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]


Find the total number of binary operations on {ab}.


The binary operation * : R × R → R is defined as a * b = 2a + b. Find (2 * 3) * 4.


Let * be a binary operation on N given by a * b = LCM (a, b) for all a, b ∈ N. Find 5 * 7.


Check the commutativity and associativity of the following binary operation '*' on Q defined by \[a * b = \frac{ab}{4}\] for all ab ∈ Q ?


The binary operation * is defined by \[a * b = \frac{ab}{7}\] on the set Q of all rational numbers. Show that * is associative.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the identity element in Z ?


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Find the identity element in Q − {−1} ?


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that every element of Q − {−1} is invertible. Also, find the inverse of an arbitrary element ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the identity element in A ?


Construct the composition table for ×4 on set S = {0, 1, 2, 3}.


Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.


If a binary operation * is defined on the set Z of integers as a * b = 3a − b, then the value of (2 * 3) * 4 is ___________ .


Q+ denote the set of all positive rational numbers. If the binary operation a ⊙ on Q+ is defined as \[a \odot = \frac{ab}{2}\] ,then the inverse of 3 is __________ .


If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .


Let * be a binary operation defined on set Q − {1} by the rule a * b = a + b − ab. Then, the identify element for * is ____________ .


The law a + b = b + a is called _________________ .


Let * be a binary operation on N defined by a * b = a + b + 10 for all ab ∈ N. The identity element for * in N is _____________ .


Let * be a binary operation defined on Q+ by the rule

\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .


The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .


Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the closure, commutative and associate properties satisfied by * on Q.


Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.


Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under * . If so, examine the existence of identity, existence of inverse properties for the operation * on M


Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A


Choose the correct alternative:

Subtraction is not a binary operation in


Choose the correct alternative:

If a * b = `sqrt("a"^2 + "b"^2)` on the real numbers then * is


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b + ab for a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a2 + b2 ∀ a, b ∈ Q


The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.


A binary operation A × A → is said to be associative if:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×