Advertisements
Advertisements
प्रश्न
The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .
विकल्प
8
6
4
2
उत्तर
2
The number of commutative binary operations on a set of n elements is \[n^\frac{n\left( n - 1 \right)}{2} \] Therefore,
Number of commutative binary operations on a set of 2 elements = \[2^\frac{2\left( 2 - 1 \right)}{2} \]
\[ = 2^1 \]
\[ = 2\]
APPEARS IN
संबंधित प्रश्न
Let * be a binary operation, on the set of all non-zero real numbers, given by `a** b = (ab)/5` for all a,b∈ R-{0} that 2*(x*5)=10
Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.
LetA= R × R and * be a binary operation on A defined by (a, b) * (c, d) = (a+c, b+d)
Show that * is commutative and associative. Find the identity element for * on A. Also find the inverse of every element (a, b) ε A.
For each binary operation * defined below, determine whether * is commutative or associative.
On Z, define a * b = a − b
Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by a ∨b = min {a, b}. Write the operation table of the operation∨.
Find which of the operations given above has identity.
Given a non-empty set X, consider the binary operation *: P(X) × P(X) → P(X) given by A * B = A ∩ B &mnForE; A, B in P(X) is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation*.
Consider the binary operations*: R ×R → and o: R × R → R defined as a * b = |a - b| and ao b = a, &mnForE;a, b ∈ R. Show that * is commutative but not associative, o is associative but not commutative. Further, show that &mnForE;a, b, c ∈ R, a*(b o c) = (a* b) o (a * c). [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.
Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.
Determine whether the following operation define a binary operation on the given set or not : 'O' on Z defined by a O b = ab for all a, b ∈ Z.
Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = a + b - 2 for all a, b ∈ N
Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by
a ×6 b = Remainder when ab is divided by 6.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, define * by a * b = a
Here, Z+ denotes the set of all non-negative integers.
Check the commutativity and associativity of the following binary operation 'o' on Q defined by \[\text{a o b }= \frac{ab}{2}\] for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?
If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].
Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.
Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Show that '*' is both commutative and associative ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the invertible element in A ?
Construct the composition table for +5 on set S = {0, 1, 2, 3, 4}.
Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.
Write the composition table for the binary operation ×5 (multiplication modulo 5) on the set S = {0, 1, 2, 3, 4}.
If the binary operation * on Z is defined by a * b = a2 − b2 + ab + 4, then value of (2 * 3) * 4 is ____________ .
The binary operation * is defined by a * b = a2 + b2 + ab + 1, then (2 * 3) * 2 is equal to ______________ .
The law a + b = b + a is called _________________ .
A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .
Let * be a binary operation on N defined by a * b = a + b + 10 for all a, b ∈ N. The identity element for * in N is _____________ .
On the set Q+ of all positive rational numbers a binary operation * is defined by \[a * b = \frac{ab}{2} \text{ for all, a, b }\in Q^+\]. The inverse of 8 is _________ .
If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *
Choose the correct alternative:
Which one of the following is a binary operation on N?
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = a – b for a, b ∈ Q
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a + ab ∀ a, b ∈ Q
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = (a – b)2 ∀ a, b ∈ Q
The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.
If * is a binary operation on the set of integers I defined by a * b = 3a + 4b - 2, then find the value of 4 * 5.
Which of the following is not a binary operation on the indicated set?
Subtraction and division are not binary operation on.