हिंदी

Find the Identity Element in the Set of All Rational Numbers Except −1 with Respect to *Defined by a * B = a + B + Ab. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.

योग

उत्तर

Let e be the identity element in Q\[-\] {\[-\]1} with respect to * such that

\[a * e = a = e * a, \forall a \in Q - \left\{ 1 \right\}\] 
\[a * e = a \text{ and }e * a = a, \forall a \in Q - \left\{ 1 \right\}\] 
\[a + e + ae = a \text{ and }e + a + ea = a, \forall a \in Q - \left\{ 1 \right\}\] 
\[e + ae = 0 \text{ and }e + ea = 0, \forall a \in Q - \left\{ 1 \right\}\] 
\[e\left( 1 + a \right) = 0 \text{ and }e\left( 1 + a \right) = 0, \forall a \in Q - \left\{ 1 \right\}\] 
\[e = 0, \forall a \in Q - \left\{ - 1 \right\} \text{   }\left[ \because a\neq-1 \right]\]

Thus, 0 is the identity element in Q - {-1} with respect to *.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Binary Operations - Exercise 3.3 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 3 Binary Operations
Exercise 3.3 | Q 2 | पृष्ठ १५

संबंधित प्रश्न

LetA= R × R and * be a binary operation on A defined by (a, b) * (c, d) = (a+c, b+d)

Show that * is commutative and associative. Find the identity element for * on A. Also find the inverse of every element (a, b) ε A.


Let * be the binary operation on given by a * = L.C.M. of and b. Find

(i) 5 * 7, 20 * 16

(ii) Is * commutative?

(iii) Is * associative?

(iv) Find the identity of * in N

(v) Which elements of are invertible for the operation *?


Is * defined on the set {1, 2, 3, 4, 5} by = L.C.M. of and a binary operation? Justify your answer.


Find which of the operations given above has identity.


Number of binary operations on the set {ab} are

(A) 10

(B) 16

(C) 20

(D) 8


Determine whether the following operation define a binary operation on the given set or not :

\[' * ' \text{on Q defined by } a * b = \frac{a - 1}{b + 1} \text{for all a, b} \in Q .\]


The binary operation * : R × R → R is defined as a * b = 2a + b. Find (2 * 3) * 4.


Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?


Check the commutativity and associativity of the following binary operations '⊙' on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = (a − b)2 for all ab ∈ Q ?


 Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?


On the set Q of all ration numbers if a binary operation * is defined by \[a * b = \frac{ab}{5}\] , prove that * is associative on Q.


On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.


Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Show that '*' is both commutative and associative ?


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by  \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\]:

Find the invertible elements of Q0 ?


Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?


Construct the composition table for ×4 on set S = {0, 1, 2, 3}.


For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.


Consider the binary operation 'o' defined by the following tables on set S = {a, bcd}.

o  a b c d
a a a a a
b a b c d
c a c d b
d a d b c

Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as \[a * b = \begin{cases}a + b & ,\text{ if a  + b} < 6 \\ a + b - 6 & , \text{if a + b} \geq 6\end{cases}\]

Show that 0 is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .


Mark the correct alternative in the following question:-

For the binary operation * on Z defined by a * b = a + b + 1, the identity element is ________________ .


The law a + b = b + a is called _________________ .


An operation * is defined on the set Z of non-zero integers by \[a * b = \frac{a}{b}\]  for all ab ∈ Z. Then the property satisfied is _______________ .


On Z an operation * is defined by a * b = a2 + b2 for all a, b ∈ Z. The operation * on Z is _______________ .


Consider the binary operation * defined on Q − {1} by the rule
a * b = a + b − ab for all a, b ∈ Q − {1}
The identity element in Q − {1} is _______________ .


Determine whether * is a binary operation on the sets-given below.

a * b = min (a, b) on A = {1, 2, 3, 4, 5}


Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A


Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:

* a b c d
a a c b d
b d a b c
c c d a a
d d b a c

Is it commutative and associative?


Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under * . If so, examine the existence of identity, existence of inverse properties for the operation * on M


Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A


Choose the correct alternative:

Which one of the following is a binary operation on N?


In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?


Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.


Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.


Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.


Let * be a binary operation on set Q – {1} defind by a * b = a + b – ab : a, b ∈ Q – {1}. Then * is ____________.


Determine which of the following binary operation on the Set N are associate and commutaive both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×