Advertisements
Advertisements
प्रश्न
Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.
उत्तर
Let e be the identity element in Q\[-\] {\[-\]1} with respect to * such that
\[a * e = a = e * a, \forall a \in Q - \left\{ 1 \right\}\]
\[a * e = a \text{ and }e * a = a, \forall a \in Q - \left\{ 1 \right\}\]
\[a + e + ae = a \text{ and }e + a + ea = a, \forall a \in Q - \left\{ 1 \right\}\]
\[e + ae = 0 \text{ and }e + ea = 0, \forall a \in Q - \left\{ 1 \right\}\]
\[e\left( 1 + a \right) = 0 \text{ and }e\left( 1 + a \right) = 0, \forall a \in Q - \left\{ 1 \right\}\]
\[e = 0, \forall a \in Q - \left\{ - 1 \right\} \text{ }\left[ \because a\neq-1 \right]\]
Thus, 0 is the identity element in Q - {-1} with respect to *.
APPEARS IN
संबंधित प्रश्न
Let * be a binary operation, on the set of all non-zero real numbers, given by `a** b = (ab)/5` for all a,b∈ R-{0} that 2*(x*5)=10
Determine whether or not of the definition of ∗ given below gives a binary operation. In the event that ∗ is not a binary operation, give justification for this.
On Z+, define ∗ by a ∗ b = a – b
For each binary operation * defined below, determine whether * is commutative or associative.
On Z+, define a * b = ab
Let * be the binary operation on N given by a * b = L.C.M. of a and b. Find
(i) 5 * 7, 20 * 16
(ii) Is * commutative?
(iii) Is * associative?
(iv) Find the identity of * in N
(v) Which elements of N are invertible for the operation *?
State whether the following statements are true or false. Justify.
For an arbitrary binary operation * on a set N, a * a = ∀ a a * N.
Consider a binary operation * on N defined as a * b = a3 + b3. Choose the correct answer.
(A) Is * both associative and commutative?
(B) Is * commutative but not associative?
(C) Is * associative but not commutative?
(D) Is * neither commutative nor associative?
Number of binary operations on the set {a, b} are
(A) 10
(B) 16
(C) 20
(D) 8
Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.
Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by
a ×6 b = Remainder when ab is divided by 6.
Determine whether the following operation define a binary operation on the given set or not :
\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\]
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]
Let * be a binary operation on the set I of integers, defined by a * b = 2a + b − 3. Find the value of 3 * 4.
Find the total number of binary operations on {a, b}.
Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = a + ab for all a, b ∈ Q ?
The binary operation * is defined by \[a * b = \frac{ab}{7}\] on the set Q of all rational numbers. Show that * is associative.
Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the identity element in Z ?
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{for all a, b} \in Q_0\].
Show that 'o' is both commutative and associate ?
Find the inverse of 5 under multiplication modulo 11 on Z11.
Define an associative binary operation on a set.
Write the total number of binary operations on a set consisting of two elements.
For the binary operation multiplication modulo 10 (×10) defined on the set S = {1, 3, 7, 9}, write the inverse of 3.
Write the composition table for the binary operation ×5 (multiplication modulo 5) on the set S = {0, 1, 2, 3, 4}.
If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.
If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .
Q+ denote the set of all positive rational numbers. If the binary operation a ⊙ on Q+ is defined as \[a \odot = \frac{ab}{2}\] ,then the inverse of 3 is __________ .
Which of the following is true ?
The binary operation * is defined by a * b = a2 + b2 + ab + 1, then (2 * 3) * 2 is equal to ______________ .
Consider the binary operation * defined on Q − {1} by the rule
a * b = a + b − ab for all a, b ∈ Q − {1}
The identity element in Q − {1} is _______________ .
If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *
Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A
Choose the correct alternative:
Subtraction is not a binary operation in
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = `"ab"/4` for a, b ∈ Q.
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a – b ∀ a, b ∈ Q
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = (a – b)2 ∀ a, b ∈ Q
Let * be a binary operation on Q, defined by a * b `= (3"ab")/5` is ____________.
The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.
A binary operation A × A → is said to be associative if:-
Determine which of the following binary operation on the Set N are associate and commutaive both.