मराठी

Find the Identity Element in the Set of All Rational Numbers Except −1 with Respect to *Defined by a * B = a + B + Ab. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.

बेरीज

उत्तर

Let e be the identity element in Q\[-\] {\[-\]1} with respect to * such that

\[a * e = a = e * a, \forall a \in Q - \left\{ 1 \right\}\] 
\[a * e = a \text{ and }e * a = a, \forall a \in Q - \left\{ 1 \right\}\] 
\[a + e + ae = a \text{ and }e + a + ea = a, \forall a \in Q - \left\{ 1 \right\}\] 
\[e + ae = 0 \text{ and }e + ea = 0, \forall a \in Q - \left\{ 1 \right\}\] 
\[e\left( 1 + a \right) = 0 \text{ and }e\left( 1 + a \right) = 0, \forall a \in Q - \left\{ 1 \right\}\] 
\[e = 0, \forall a \in Q - \left\{ - 1 \right\} \text{   }\left[ \because a\neq-1 \right]\]

Thus, 0 is the identity element in Q - {-1} with respect to *.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Binary Operations - Exercise 3.3 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 3 Binary Operations
Exercise 3.3 | Q 2 | पृष्ठ १५

संबंधित प्रश्‍न

Let * be a binary operation, on the set of all non-zero real numbers, given by `a** b = (ab)/5` for all a,b∈ R-{0} that 2*(x*5)=10


Determine whether or not of the definition of ∗ given below gives a binary operation. In the event that ∗ is not a binary operation, give justification for this.

On Z+, define ∗ by a ∗ b = a – b


For each binary operation * defined below, determine whether * is commutative or associative.

On Z+, define ab


Let * be the binary operation on given by a * = L.C.M. of and b. Find

(i) 5 * 7, 20 * 16

(ii) Is * commutative?

(iii) Is * associative?

(iv) Find the identity of * in N

(v) Which elements of are invertible for the operation *?


State whether the following statements are true or false. Justify.

For an arbitrary binary operation * on a set N= ∀  N.


Consider a binary operation * on defined as a3 + b3. Choose the correct answer.

(A) Is * both associative and commutative?

(B) Is * commutative but not associative?

(C) Is * associative but not commutative?

(D) Is * neither commutative nor associative?


Number of binary operations on the set {ab} are

(A) 10

(B) 16

(C) 20

(D) 8


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.


Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by

a ×6 b = Remainder when ab is divided by 6.


Determine whether the following operation define a binary operation on the given set or not :

\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\] 
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]


Let * be a binary operation on the set I of integers, defined by a * b = 2a + b − 3. Find the value of 3 * 4.


Find the total number of binary operations on {ab}.


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = a + ab for all ab ∈ Q ?


The binary operation * is defined by \[a * b = \frac{ab}{7}\] on the set Q of all rational numbers. Show that * is associative.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the identity element in Z ?


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by   \[a o b = \frac{ab}{2}, \text{for all a, b} \in Q_0\].

Show that 'o' is both commutative and associate ?


Find the inverse of 5 under multiplication modulo 11 on Z11.


Define an associative binary operation on a set.


Write the total number of binary operations on a set consisting of two elements.


For the binary operation multiplication modulo 10 (×10) defined on the set S = {1, 3, 7, 9}, write the inverse of 3.


Write the composition table for the binary operation ×5 (multiplication modulo 5) on the set S = {0, 1, 2, 3, 4}.


If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.


If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .


Q+ denote the set of all positive rational numbers. If the binary operation a ⊙ on Q+ is defined as \[a \odot = \frac{ab}{2}\] ,then the inverse of 3 is __________ .


Which of the following is true ?


The binary operation * is defined by a * b = a2 + b2 + ab + 1, then (2 * 3) * 2 is equal to ______________ .


Consider the binary operation * defined on Q − {1} by the rule
a * b = a + b − ab for all a, b ∈ Q − {1}
The identity element in Q − {1} is _______________ .


If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *


Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A


Choose the correct alternative:

Subtraction is not a binary operation in


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = `"ab"/4` for a, b ∈ Q.


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a – b ∀ a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = (a – b)2 ∀ a, b ∈ Q


Let * be a binary operation on Q, defined by a * b `= (3"ab")/5` is  ____________.


The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.


A binary operation A × A → is said to be associative if:-


Determine which of the following binary operation on the Set N are associate and commutaive both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×