Advertisements
Advertisements
प्रश्न
Consider a binary operation * on N defined as a * b = a3 + b3. Choose the correct answer.
(A) Is * both associative and commutative?
(B) Is * commutative but not associative?
(C) Is * associative but not commutative?
(D) Is * neither commutative nor associative?
उत्तर
On N, the operation * is defined as a * b = a3 + b3.
For, a, b, ∈ N, we have:
a * b = a3 + b3 = b3 + a3 = b * a [Addition is commutative in N]
Therefore, the operation * is commutative.
It can be observed that:
`(1 * 2)* 3 = (1^3 + 2^3)*3 = 9 * 3 =9^3 + 3^3 = 729 + 27 = 756`
`1 * (2 * 3) = 1 * (2^3 + 3^3) = 1 * (8 + 27) = 1^3 + 35^3 = 1 + (35)^3 = 1+ 42875 = 42876`
∴(1 * 2) * 3 ≠ 1 * (2 * 3) ; where 1, 2, 3 ∈ N
Therefore, the operation * is not associative.
Hence, the operation * is commutative, but not associative. Thus, the correct answer is B.
APPEARS IN
संबंधित प्रश्न
Is * defined on the set {1, 2, 3, 4, 5} by a * b = L.C.M. of a and b a binary operation? Justify your answer.
Determine whether or not the definition of *given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = ab
Here, Z+ denotes the set of all non-negative integers.
Let S = {a, b, c}. Find the total number of binary operations on S.
Let S be the set of all rational numbers of the form \[\frac{m}{n}\] , where m ∈ Z and n = 1, 2, 3. Prove that * on S defined by a * b = ab is not a binary operation.
Prove that the operation * on the set
\[M = \left\{ \begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix}; a, b \in R - \left\{ 0 \right\} \right\}\] defined by A * B = AB is a binary operation.
Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?
Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = (a − b)2 for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on Q defined by \[a * b = \frac{ab}{4}\] for all a, b ∈ Q ?
On the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a , b ∈ Z. Prove that * is not associative on Z.
On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.
Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:
Prove that * is commutative as well as associative ?
Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\] :
Find the identity element in Q0.
Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.
Write the identity element for the binary operation * defined on the set R of all real numbers by the rule
\[a * b = \frac{3ab}{7} \text{ for all a, b} \in R .\] ?
Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.
A binary operation * is defined on the set R of all real numbers by the rule \[a * b = \sqrt{ a^2 + b^2} \text{for all a, b } \in R .\]
Write the identity element for * on R.
Mark the correct alternative in the following question:-
For the binary operation * on Z defined by a * b = a + b + 1, the identity element is ________________ .
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ________________ .
Let * be a binary operation on R defined by a * b = ab + 1. Then, * is _________________ .
A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .
On the set Q+ of all positive rational numbers a binary operation * is defined by \[a * b = \frac{ab}{2} \text{ for all, a, b }\in Q^+\]. The inverse of 8 is _________ .
Let '*' be a binary operation on N defined by
a * b = 1.c.m. (a, b) for all a, b ∈ N
Find 2 * 4, 3 * 5, 1 * 6.
Determine whether * is a binary operation on the sets-given below.
a * b – a.|b| on R
Determine whether * is a binary operation on the sets-given below.
a * b = min (a, b) on A = {1, 2, 3, 4, 5}
Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`
Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A
Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.
Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:
* | a | b | c | d |
a | a | c | b | d |
b | d | a | b | c |
c | c | d | a | a |
d | d | b | a | c |
Is it commutative and associative?
Choose the correct alternative:
If a * b = `sqrt("a"^2 + "b"^2)` on the real numbers then * is
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = a – b + ab for a, b ∈ Q
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a2 + b2 ∀ a, b ∈ Q
The identity element for the binary operation * defined on Q ~ {0} as a * b = `"ab"/2` ∀ a, b ∈ Q ~ {0} is ______.
Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.
Which of the following is not a binary operation on the indicated set?
Determine which of the following binary operation on the Set N are associate and commutaive both.
a * b = `((a + b))/2` ∀a, b ∈ N is