मराठी

Consider a Binary Operation * On N Defined As A * B = A3 + B3. Choose the Correct Answer. - Mathematics

Advertisements
Advertisements

प्रश्न

Consider a binary operation * on defined as a3 + b3. Choose the correct answer.

(A) Is * both associative and commutative?

(B) Is * commutative but not associative?

(C) Is * associative but not commutative?

(D) Is * neither commutative nor associative?

उत्तर

On N, the operation * is defined as * b = a3 + b3.

For, ab, ∈ N, we have:

* b = a3 + b3 = b3 + a3 = * a [Addition is commutative in N]

Therefore, the operation * is commutative.

It can be observed that:

`(1 * 2)* 3 = (1^3 + 2^3)*3 = 9 * 3 =9^3 + 3^3 = 729 + 27 = 756`

`1 * (2 * 3) = 1 * (2^3 + 3^3) = 1 * (8 + 27) = 1^3 + 35^3 = 1 + (35)^3  = 1+ 42875 = 42876`

∴(1 * 2) * 3 ≠ 1 * (2 * 3) ; where 1, 2, 3 ∈ N

Therefore, the operation * is not associative.

Hence, the operation * is commutative, but not associative. Thus, the correct answer is B.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations and Functions - Exercise 1.4 [पृष्ठ २६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 1 Relations and Functions
Exercise 1.4 | Q 13 | पृष्ठ २६

संबंधित प्रश्‍न

Is * defined on the set {1, 2, 3, 4, 5} by = L.C.M. of and a binary operation? Justify your answer.


Determine whether or not the definition of *given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On Z+, defined * by a * b = ab

Here, Z+ denotes the set of all non-negative integers.


Let S = {abc}. Find the total number of binary operations on S.


Let S be the set of all rational numbers of the form \[\frac{m}{n}\] , where m ∈ Z and n = 1, 2, 3. Prove that * on S defined by a * b = ab is not a binary operation.


Prove that the operation * on the set

\[M = \left\{ \begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix}; a, b \in R - \left\{ 0 \right\} \right\}\] defined by A * B = AB is a binary operation.


Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?


Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = (a − b)2 for all ab ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by \[a * b = \frac{ab}{4}\] for all ab ∈ Q ?


On the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a , b ∈ Z. Prove that * is not associative on Z.


On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.


Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:

Prove that * is commutative as well as associative ?


Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\] :

 Find the identity element in Q0.


Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.


Write the identity element for the binary operation * defined on the set R of all real numbers by the rule

\[a * b = \frac{3ab}{7} \text{ for all a, b} \in R .\] ?


Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.


A binary operation * is defined on the set R of all real numbers by the rule \[a * b = \sqrt{  a^2 + b^2} \text{for all a, b } \in R .\]

Write the identity element for * on R.


Mark the correct alternative in the following question:-

For the binary operation * on Z defined by a * b = a + b + 1, the identity element is ________________ .


The binary operation * defined on N by a * b = a + b + ab for all a, b N is ________________ .


Let * be a binary operation on R defined by a * b = ab + 1. Then, * is _________________ .


A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .


On the set Q+ of all positive rational numbers a binary operation * is defined by \[a * b = \frac{ab}{2} \text{ for all, a, b }\in Q^+\]. The inverse of 8 is _________ .


Let '*' be a binary operation on N defined by
a * b = 1.c.m. (a, b) for all a, b ∈ N
Find 2 * 4, 3 * 5, 1 * 6.


Determine whether * is a binary operation on the sets-given below.

a * b – a.|b| on R


Determine whether * is a binary operation on the sets-given below.

a * b = min (a, b) on A = {1, 2, 3, 4, 5}


Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`


Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A


Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.


Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:

* a b c d
a a c b d
b d a b c
c c d a a
d d b a c

Is it commutative and associative?


Choose the correct alternative:

If a * b = `sqrt("a"^2 + "b"^2)` on the real numbers then * is


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b + ab for a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a2 + b2 ∀ a, b ∈ Q


The identity element for the binary operation * defined on Q ~ {0} as a * b = `"ab"/2` ∀ a, b ∈ Q ~ {0} is ______.


Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.


Which of the following is not a binary operation on the indicated set?


Determine which of the following binary operation on the Set N are associate and commutaive both.


a * b = `((a + b))/2` ∀a, b ∈ N is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×