मराठी

Let S Be the Set of All Rational Numbers Except 1 and * Be Defined on S by a * B = a + B − Ab, for All A, B ∈ S: Prove that * is Commutative as Well as Associative ? - Mathematics

Advertisements
Advertisements

प्रश्न

Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:

Prove that * is commutative as well as associative ?

उत्तर

Commutativity :

\[\text{Let }a, b \in S . \text{Then}, \] 
\[a * b = a + b - ab\] 
\[ = b + a - ba\] 
\[ = b * a\] 
\[\text{Therefore}, \] 
\[a * b = b * a, \forall a, b \in S\]

Thus, * is commutative on S.

Associativity:

\[\text{Let} a, b, c \in S . \text{Then}, \] 
\[a * \left( b * c \right) = a * \left( b + c - bc \right)\] 
\[ = a + b + c - bc - a\left( b + c - bc \right)\] 
\[ = a + b + c - bc - ab - ac + abc\] 
\[\left( a * b \right) * c = \left( a + b - ab \right) * c\] 
\[ = a + b - ab + c - \left( a + b - ab \right)c\] 
\[ = a + b + c - ab - ac - bc + abc\] 
\[\text{Therefore}, \] 
\[a * \left( b * c \right) = \left( a * b \right) * c, \forall a, b, c \in S\]

Thus , * is associative on S.

So, * is commutative as well as associative.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Binary Operations - Exercise 3.2 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 3 Binary Operations
Exercise 3.2 | Q 14.2 | पृष्ठ १३

संबंधित प्रश्‍न

Given a non-empty set X, let *: P(X) × P(X) → P(X) be defined as A * B = (A − B) ∪ (B −A), &mnForE; AB ∈ P(X). Show that the empty set Φ is the identity for the operation * and all the elements A of P(X) are invertible with A−1 = A. (Hint: (A − Φ) ∪ (Φ − A) = Aand (A − A) ∪ (A − A) = A * A = Φ).


If a * b denotes the larger of 'a' and 'b' and if a∘b = (a * b) + 3, then write the value of (5)∘(10), where * and ∘ are binary operations.


Let S be the set of all rational numbers of the form \[\frac{m}{n}\] , where m ∈ Z and n = 1, 2, 3. Prove that * on S defined by a * b = ab is not a binary operation.


Prove that the operation * on the set

\[M = \left\{ \begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix}; a, b \in R - \left\{ 0 \right\} \right\}\] defined by A * B = AB is a binary operation.


Check the commutativity and associativity of the following binary operations '⊙' on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = ab2 for all ab ∈ Q ?


Check the commutativity and associativity of the following binary operation  '*' on R defined by a * b = a + b − 7 for all ab ∈ R ?


Check the commutativity and associativity of the following binary operation  '*' on Z defined by a * b = a + b − ab for all a, b ∈ Z ?


Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:

Prove that * is a binary operation on S ?


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the identity element in Z ?


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the invertible elements in Z ?


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that '*' is both commutative and associative on Q − {−1}.


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that every element of Q − {−1} is invertible. Also, find the inverse of an arbitrary element ?


Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?


Construct the composition table for +5 on set S = {0, 1, 2, 3, 4}.


Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.


For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.


Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as \[a * b = \begin{cases}a + b & ,\text{ if a  + b} < 6 \\ a + b - 6 & , \text{if a + b} \geq 6\end{cases}\]

Show that 0 is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Define a binary operation on a set.


Define identity element for a binary operation defined on a set.


If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.


The law a + b = b + a is called _________________ .


Let * be a binary operation on Q+ defined by \[a * b = \frac{ab}{100} \text{ for all a, b } \in Q^+\] The inverse of 0.1 is _________________ .


Let * be a binary operation on N defined by a * b = a + b + 10 for all ab ∈ N. The identity element for * in N is _____________ .


The number of binary operation that can be defined on a set of 2 elements is _________ .


If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *


Examine whether the operation *defined on R by a * b = ab + 1 is (i) a binary or not. (ii) if a binary operation, is it associative or not?


On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?


Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`


Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A ∧ B


Choose the correct alternative:

Which one of the following is a binary operation on N?


Choose the correct alternative:

In the set Q define a ⨀ b = a + b + ab. For what value of y, 3 ⨀ (y ⨀ 5) = 7?


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = (a – b)2 ∀ a, b ∈ Q


Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.


If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then"  3 "*" (1/5 "*" 1/2)` is equal to ____________.


Let * be a binary operation on Q, defined by a * b `= (3"ab")/5` is  ____________.


Let * be a binary operation on set Q – {1} defind by a * b = a + b – ab : a, b ∈ Q – {1}. Then * is ____________.


Let * be the binary operation on N given by a * b = HCF (a, b) where, a, b ∈ N. Find the value of 22 * 4.


Which of the following is not a binary operation on the indicated set?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×