Advertisements
Advertisements
प्रश्न
Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:
Prove that * is commutative as well as associative ?
उत्तर
Commutativity :
\[\text{Let }a, b \in S . \text{Then}, \]
\[a * b = a + b - ab\]
\[ = b + a - ba\]
\[ = b * a\]
\[\text{Therefore}, \]
\[a * b = b * a, \forall a, b \in S\]
Thus, * is commutative on S.
Associativity:
\[\text{Let} a, b, c \in S . \text{Then}, \]
\[a * \left( b * c \right) = a * \left( b + c - bc \right)\]
\[ = a + b + c - bc - a\left( b + c - bc \right)\]
\[ = a + b + c - bc - ab - ac + abc\]
\[\left( a * b \right) * c = \left( a + b - ab \right) * c\]
\[ = a + b - ab + c - \left( a + b - ab \right)c\]
\[ = a + b + c - ab - ac - bc + abc\]
\[\text{Therefore}, \]
\[a * \left( b * c \right) = \left( a * b \right) * c, \forall a, b, c \in S\]
Thus , * is associative on S.
So, * is commutative as well as associative.
APPEARS IN
संबंधित प्रश्न
LetA= R × R and * be a binary operation on A defined by (a, b) * (c, d) = (a+c, b+d)
Show that * is commutative and associative. Find the identity element for * on A. Also find the inverse of every element (a, b) ε A.
For each binary operation * defined below, determine whether * is commutative or associative.
On Z, define a * b = a − b
For each binary operation * defined below, determine whether * is commutative or associative.
On Z+, define a * b = ab
Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by a ∨b = min {a, b}. Write the operation table of the operation∨.
Is * defined on the set {1, 2, 3, 4, 5} by a * b = L.C.M. of a and b a binary operation? Justify your answer.
State whether the following statements are true or false. Justify.
For an arbitrary binary operation * on a set N, a * a = ∀ a a * N.
Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A
1) Find the identity element in A
2) Find the invertible elements of A.
Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.
Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.
Let S be the set of all rational numbers of the form \[\frac{m}{n}\] , where m ∈ Z and n = 1, 2, 3. Prove that * on S defined by a * b = ab is not a binary operation.
Let * be a binary operation on N given by a * b = LCM (a, b) for all a, b ∈ N. Find 5 * 7.
On Q, the set of all rational numbers, * is defined by \[a * b = \frac{a - b}{2}\] , shown that * is no associative ?
On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.
Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:
Prove that * is a binary operation on S ?
Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the identity element in Z ?
Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that every element of Q − {−1} is invertible. Also, find the inverse of an arbitrary element ?
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\]:
Find the invertible elements of Q0 ?
On R − {1}, a binary operation * is defined by a * b = a + b − ab. Prove that * is commutative and associative. Find the identity element for * on R − {1}. Also, prove that every element of R − {1} is invertible.
Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?
Let A \[=\] R \[\times\] R and \[*\] be a binary operation on A defined by \[(a, b) * (c, d) = (a + c, b + d) .\] . Show that \[*\] is commutative and associative. Find the binary element for \[*\] on A, if any.
Write the composition table for the binary operation ×5 (multiplication modulo 5) on the set S = {0, 1, 2, 3, 4}.
If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.
If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .
If G is the set of all matrices of the form
\[\begin{bmatrix}x & x \\ x & x\end{bmatrix}, \text{where x } \in R - \left\{ 0 \right\}\] then the identity element with respect to the multiplication of matrices as binary operation, is ______________ .
Let * be a binary operation defined on set Q − {1} by the rule a * b = a + b − ab. Then, the identify element for * is ____________ .
The law a + b = b + a is called _________________ .
For the binary operation * defined on R − {1} by the rule a * b = a + b + ab for all a, b ∈ R − {1}, the inverse of a is ________________ .
Let * be a binary operation defined on Q+ by the rule
\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .
The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .
Let '*' be a binary operation on N defined by
a * b = 1.c.m. (a, b) for all a, b ∈ N
Find 2 * 4, 3 * 5, 1 * 6.
Consider the binary operation * defined by the following tables on set S = {a, b, c, d}.
* | a | b | c | d |
a | a | b | c | d |
b | b | a | d | c |
c | c | d | a | b |
d | d | c | b | a |
Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.
Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A
Choose the correct alternative:
Subtraction is not a binary operation in
In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?
Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.
A binary operation on a set has always the identity element.
Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.
Determine which of the following binary operation on the Set N are associate and commutaive both.
Subtraction and division are not binary operation on.