हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A - Mathematics

Advertisements
Advertisements

प्रश्न

Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A

योग

उत्तर

Let a, b ∈ A

i.e. a ≠ ±1 , b ≠ 1

Now a * b = a + b – ab

If a + b – ab = 1

⇒ a + b – ab – 1 = 0

i.e. a(1 – b) – 1(1 – b) = 0

(a – 1)(1 – b) = 0 ⇒ a = 1, b = 1

But a ≠ 1 , b ≠ 1

So (a – 1)(1 – 6) ≠ 1

i.e. a * b ∈ A.

So * is a binary on A.

To verify the commutative property:

Let a, b ∈ A

i.e. a ≠ 1, b ≠ 1

Now a * b = a + b – ab

And b * a = b + a – ba

So a * b = b * a

⇒ * is commutative on A.

To verify the associative property:

Let a, b, c ∈ A

i.e. a, b, c ≠ 1

To prove the associative property we have to prove that

a * (b * c) = (a * b) * c

L.H.S: b * c = b + c – bc = D  .......(say)

So a * (b * c) = a * D = a + D – aD

= a + (b + c – bc) – a(b + c – bc)

= a + b + c – bc – ab – ac + abc

= a + b + c – ab – bc – ac + abc  .......(1)

R.H.S: (a * b) = a + b – ab = K ......(say)

So (a * b) * c = K * c = K + c – Kc

= (a + b – ab) + c – (a + b – ab)c

= a + b – ab + c – ac – bc + abc

= a + b + c – ab – bc – ac + abc ......(2)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Discrete Mathematics - Exercise 12.1 [पृष्ठ २३६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 12 Discrete Mathematics
Exercise 12.1 | Q 10. (i) | पृष्ठ २३६

संबंधित प्रश्न

Let * be a binary operation, on the set of all non-zero real numbers, given by `a** b = (ab)/5` for all a,b∈ R-{0} that 2*(x*5)=10


For each binary operation * defined below, determine whether * is commutative or associative.

On Z, define − b


Determine whether the following operation define a binary operation on the given set or not :

\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\] 
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On R, define by a*b = ab2

Here, Z+ denotes the set of all non-negative integers.


Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?


On the set Q of all ration numbers if a binary operation * is defined by \[a * b = \frac{ab}{5}\] , prove that * is associative on Q.


If the binary operation * on the set Z is defined by a * b = a + b −5, the find the identity element with respect to *.


Consider the binary operation 'o' defined by the following tables on set S = {a, bcd}.

o  a b c d
a a a a a
b a b c d
c a c d b
d a d b c

Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as \[a * b = \begin{cases}a + b & ,\text{ if a  + b} < 6 \\ a + b - 6 & , \text{if a + b} \geq 6\end{cases}\]

Show that 0 is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Define a commutative binary operation on a set.


Define identity element for a binary operation defined on a set.


Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.


If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .


If G is the set of all matrices of the form

\[\begin{bmatrix}x & x \\ x & x\end{bmatrix}, \text{where x } \in R - \left\{ 0 \right\}\] then the identity element with respect to the multiplication of matrices as binary operation, is ______________ .


On Z an operation * is defined by a * b = a2 + b2 for all a, b ∈ Z. The operation * on Z is _______________ .


Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.


If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then"  3 "*" (1/5 "*" 1/2)` is equal to ____________.


The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.


Which of the following is not a binary operation on the indicated set?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×