Advertisements
Advertisements
प्रश्न
On the set Q of all ration numbers if a binary operation * is defined by \[a * b = \frac{ab}{5}\] , prove that * is associative on Q.
उत्तर
\[a * \left( b * c \right) = a * \left( \frac{bc}{5} \right)\]
\[ = \frac{a\left( \frac{bc}{5} \right)}{5}\]
\[ = \frac{abc}{25}\]
\[\left( a * b \right) * c = \left( \frac{ab}{5} \right) * c\]
\[ = \frac{\left( \frac{ab}{5} \right)c}{5}\]
\[ = \frac{abc}{25}\]
\[\text{Therefore},\]
\[a * \left( b * c \right) = \left( a * b \right) * c, \forall a, b, c \in Q . \]
APPEARS IN
संबंधित प्रश्न
Determine whether or not of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = ab
For each binary operation * defined below, determine whether * is commutative or associative.
On Z, define a * b = a − b
For each binary operation * defined below, determine whether * is commutative or associative.
On R − {−1}, define `a*b = a/(b+1)`
Let A = N × N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d)
Show that * is commutative and associative. Find the identity element for * on A, if any.
Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as
a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`
Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b
Here, Z+ denotes the set of all non-negative integers.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, define * by a * b = a
Here, Z+ denotes the set of all non-negative integers.
Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.
Find the total number of binary operations on {a, b}.
Determine which of the following binary operation is associative and which is commutative : * on N defined by a * b = 1 for all a, b ∈ N ?
Let A be any set containing more than one element. Let '*' be a binary operation on A defined by a * b = b for all a, b ∈ A Is '*' commutative or associative on A ?
Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?
If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].
On the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a , b ∈ Z. Prove that * is not associative on Z.
Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Show that '*' is both commutative and associative ?
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\] :
Find the identity element in Q0.
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\]:
Find the invertible elements of Q0 ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Show that '*' is both commutative and associative on A ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the identity element in A ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the invertible element in A ?
A binary operation * is defined on the set R of all real numbers by the rule \[a * b = \sqrt{ a^2 + b^2} \text{for all a, b } \in R .\]
Write the identity element for * on R.
Let * be a binary operation defined by a * b = 3a + 4b − 2. Find 4 * 5.
If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .
If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .
Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all a, b ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .
Let * be a binary operation defined on set Q − {1} by the rule a * b = a + b − ab. Then, the identify element for * is ____________ .
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ________________ .
Let * be a binary operation on Q+ defined by \[a * b = \frac{ab}{100} \text{ for all a, b } \in Q^+\] The inverse of 0.1 is _________________ .
Determine whether * is a binary operation on the sets-given below.
a * b – a.|b| on R
Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A
Choose the correct alternative:
Subtraction is not a binary operation in
Choose the correct alternative:
In the set Q define a ⨀ b = a + b + ab. For what value of y, 3 ⨀ (y ⨀ 5) = 7?
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = ab2 for a, b ∈ Q
Let R be the set of real numbers and * be the binary operation defined on R as a * b = a + b – ab ∀ a, b ∈ R. Then, the identity element with respect to the binary operation * is ______.
Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.
The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA "a, b" in "Q" - {0}` is ____________.
Which of the following is not a binary operation on the indicated set?