Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
In the set Q define a ⨀ b = a + b + ab. For what value of y, 3 ⨀ (y ⨀ 5) = 7?
विकल्प
y = `2/3`
y = `(-2)/3`
y = `(-2)/3`
y = 4
उत्तर
y = `(-2)/3`
APPEARS IN
संबंधित प्रश्न
For each binary operation * defined below, determine whether * is commutative or associative.
On Q, define a * b = ab + 1
For each binary operation * defined below, determine whether * is commutative or associative.
On Z+, define a * b = ab
State whether the following statements are true or false. Justify.
For an arbitrary binary operation * on a set N, a * a = ∀ a a * N.
State whether the following statements are true or false. Justify.
If * is a commutative binary operation on N, then a * (b * c) = (c * b) * a
Determine whether the following operation define a binary operation on the given set or not :
\[' * ' \text{on Q defined by } a * b = \frac{a - 1}{b + 1} \text{for all a, b} \in Q .\]
Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = ab2 for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on R defined by a * b = a + b − 7 for all a, b ∈ R ?
Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative ?
Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:
Prove that * is a binary operation on S ?
If the binary operation * on the set Z is defined by a * b = a + b −5, the find the identity element with respect to *.
Define an associative binary operation on a set.
Write the composition table for the binary operation ×5 (multiplication modulo 5) on the set S = {0, 1, 2, 3, 4}.
Let * be a binary operation defined on Q+ by the rule
\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .
The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .
Examine whether the operation *defined on R by a * b = ab + 1 is (i) a binary or not. (ii) if a binary operation, is it associative or not?
On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A ∧ B) v C
In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?
Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.