हिंदी

State Whether the Following Statements Are True Or False. Justify. If * is a Commutative Binary Operation On N, Then A * (B * C) = (C * B) * A - Mathematics

Advertisements
Advertisements

प्रश्न

State whether the following statements are true or false. Justify.

If * is a commutative binary operation on N, then * (c) = (b) * a

उत्तर

R.H.S. = (* b) * a

= (* c) * a [* is commutative]

a * (* c) [Again, as * is commutative]

= L.H.S.

∴ a * (* c) = (* b) * a

Therefore, statement (ii) is true.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations and Functions - Exercise 1.4 [पृष्ठ २६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 1 Relations and Functions
Exercise 1.4 | Q 12.2 | पृष्ठ २६

संबंधित प्रश्न

Determine whether or not of the definition of ∗ given below gives a binary operation. In the event that ∗ is not a binary operation, give justification for this.

On Z+, define ∗ by a ∗ b = a – b


Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On R, define * by ab2


Is * defined on the set {1, 2, 3, 4, 5} by = L.C.M. of and a binary operation? Justify your answer.


Let * be a binary operation on the set of rational numbers as follows:

(i) − 

(ii) a2 + b2

(iii) ab 

(iv) = (− b)2

(v) a * b = ab/4

(vi) ab2

Find which of the binary operations are commutative and which are associative.


Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by

a ×6 b = Remainder when ab is divided by 6.


Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.


Find the total number of binary operations on {ab}.


Check the commutativity and associativity of the following binary operations '*'. on Q defined by a * b = a − b for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by \[a * b = \frac{ab}{4}\] for all ab ∈ Q ?


On Z, the set of all integers, a binary operation * is defined by a * b = a + 3b − 4. Prove that * is neither commutative nor associative on Z.


The binary operation * is defined by \[a * b = \frac{ab}{7}\] on the set Q of all rational numbers. Show that * is associative.


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Find the identity element in Q − {−1} ?


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by   \[a o b = \frac{ab}{2}, \text{for all a, b} \in Q_0\].

Show that 'o' is both commutative and associate ?


Construct the composition table for +5 on set S = {0, 1, 2, 3, 4}.


Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.


For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.


Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as \[a * b = \begin{cases}a + b & ,\text{ if a  + b} < 6 \\ a + b - 6 & , \text{if a + b} \geq 6\end{cases}\]

Show that 0 is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Define a commutative binary operation on a set.


Write the total number of binary operations on a set consisting of two elements.


Write the composition table for the binary operation ×5 (multiplication modulo 5) on the set S = {0, 1, 2, 3, 4}.


If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .


Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all ab ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .


If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .


Subtraction of integers is ___________________ .


The law a + b = b + a is called _________________ .


Let * be a binary operation on N defined by a * b = a + b + 10 for all ab ∈ N. The identity element for * in N is _____________ .


The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .


Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:

* a b c d
a a c b d
b d a b c
c c d a a
d d b a c

Is it commutative and associative?


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A v B


Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under *. If so, examine the commutative and associative properties satisfied by * on M


Choose the correct alternative:

A binary operation on a set S is a function from


Choose the correct alternative:

Which one of the following is a binary operation on N?


Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.


A binary operation on a set has always the identity element.


The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.


Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×