हिंदी

Let * Be a Binary Operation On Q − {−1} Defined By A * B = A + B + Ab For All A, B ∈ Q − {−1} Find the Identity Element In Q − {−1} ? - Mathematics

Advertisements
Advertisements

प्रश्न

Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Find the identity element in Q − {−1} ?

उत्तर

Let e be the identity element in Q\[-\]{\[-\]1} with respect to * such that

\[a * e = a = e * a, \forall a \in Q - \left\{ - 1 \right\}\] 
\[ \Rightarrow a * e = a \text{ and }e * a = a, \forall a \in Q - \left\{ - 1 \right\}\] 
\[ \Rightarrow a + e + ae = a \text{ and } e + a + ea = a, \forall a \in Q - \left\{ - 1 \right\}\] 
\[ \Rightarrow e\left( 1 + a \right) = 0, \forall a \in Q - \left\{ - 1 \right\}\] 
\[ \Rightarrow e = 0, \forall a \in Q - \left\{ - 1 \right\} \left[ \because a\neq-1 \right]\] 

Thus, 0 is the identity element inQ\[-\]{\[-\]1} with respect to *.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Binary Operations - Exercise 3.4 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 3 Binary Operations
Exercise 3.4 | Q 3.2 | पृष्ठ २५

संबंधित प्रश्न

For each binary operation * defined below, determine whether * is commutative or associative.

On Z, define − b


For each binary operation * defined below, determine whether * is commutative or associative.

On Z+, define ab


Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.

(i) Compute (2 * 3) * 4 and 2 * (3 * 4)

(ii) Is * commutative?

(iii) Compute (2 * 3) * (4 * 5).

(Hint: use the following table)

* 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

Let*′ be the binary operation on the set {1, 2, 3, 4, 5} defined by *′ = H.C.F. of and b. Is the operation *′ same as the operation * defined in Exercise 4 above? Justify your answer.


Consider the binary operations*: ×→ and o: R × R → defined as a * b = |a - b| and ab = a, &mnForE;ab ∈ R. Show that * is commutative but not associative, o is associative but not commutative. Further, show that &mnForE;abc ∈ Ra*(b o c) = (ab) o (a * c). [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.


Given a non-empty set X, let *: P(X) × P(X) → P(X) be defined as A * B = (A − B) ∪ (B −A), &mnForE; AB ∈ P(X). Show that the empty set Φ is the identity for the operation * and all the elements A of P(X) are invertible with A−1 = A. (Hint: (A − Φ) ∪ (Φ − A) = Aand (A − A) ∪ (A − A) = A * A = Φ).


Determine whether the following operation define a binary operation on the given set or not : '⊙' on N defined by a ⊙ b= ab + ba for all a, b ∈ N


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

 On Z+, define * by a * b = a

Here, Z+ denotes the set of all non-negative integers.


Let * be a binary operation on the set I of integers, defined by a * b = 2a + b − 3. Find the value of 3 * 4.


Determine which of the following binary operation is associative and which is commutative : * on N defined by a * b = 1 for all a, b ∈ N ?


Check the commutativity and associativity of the following binary operations '⊙' on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q ?


The binary operation * is defined by \[a * b = \frac{ab}{7}\] on the set Q of all rational numbers. Show that * is associative.


On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.


Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that every element of Q − {−1} is invertible. Also, find the inverse of an arbitrary element ?


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :

Find the invertible elements in A ?


Construct the composition table for ×4 on set S = {0, 1, 2, 3}.


Construct the composition table for +5 on set S = {0, 1, 2, 3, 4}.


Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.


Consider the binary operation 'o' defined by the following tables on set S = {a, bcd}.

o  a b c d
a a a a a
b a b c d
c a c d b
d a d b c

Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


Define a commutative binary operation on a set.


Define an associative binary operation on a set.


Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.


If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .


The binary operation * is defined by a * b = a2 + b2 + ab + 1, then (2 * 3) * 2 is equal to ______________ .


On Z an operation * is defined by a * b = a2 + b2 for all a, b ∈ Z. The operation * on Z is _______________ .


Let * be a binary operation on N defined by a * b = a + b + 10 for all ab ∈ N. The identity element for * in N is _____________ .


Let '*' be a binary operation on N defined by
a * b = 1.c.m. (a, b) for all a, b ∈ N
Find 2 * 4, 3 * 5, 1 * 6.


Determine whether * is a binary operation on the sets-given below.

a * b = min (a, b) on A = {1, 2, 3, 4, 5}


Fill in the following table so that the binary operation * on A = {a, b, c} is commutative.

* a b c
a b    
b c b a
c a   c

Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:

* a b c d
a a c b d
b d a b c
c c d a a
d d b a c

Is it commutative and associative?


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A ∧ B


Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under * . If so, examine the existence of identity, existence of inverse properties for the operation * on M


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = `"ab"/4` for a, b ∈ Q.


Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.


Determine which of the following binary operation on the Set N are associate and commutaive both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×