हिंदी

Let*′ Be the Binary Operation on the Set {1, 2, 3, 4, 5} Defined By A *′ B = H.C.F. Of A And B. is the Operation *′ Same as the Operation * Defined in Exercise 4 Above? Justify Your Answer. - Mathematics

Advertisements
Advertisements

प्रश्न

Let*′ be the binary operation on the set {1, 2, 3, 4, 5} defined by *′ = H.C.F. of and b. Is the operation *′ same as the operation * defined in Exercise 4 above? Justify your answer.

उत्तर

The binary operation *′ on the set {1, 2, 3 4, 5} is defined as *′ b = H.C.F of a and b.

The operation table for the operation *′ can be given as:

* 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

We observe that the operation tables for the operations * and *′ are the same.

Thus, the operation *′ is same as the operation*.

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations and Functions - Exercise 1.4 [पृष्ठ २५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 1 Relations and Functions
Exercise 1.4 | Q 5 | पृष्ठ २५

संबंधित प्रश्न

Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) =  (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.

(iii)and hence write the inverse of elements (5, 3) and (1/2,4)


Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by a


For each binary operation * defined below, determine whether * is commutative or associative.

On Q, define a * b  = `(ab)/2`


For each binary operation * defined below, determine whether * is commutative or associative.

On Z+, define ab


Let * be the binary operation on given by a * = L.C.M. of and b. Find

(i) 5 * 7, 20 * 16

(ii) Is * commutative?

(iii) Is * associative?

(iv) Find the identity of * in N

(v) Which elements of are invertible for the operation *?


State whether the following statements are true or false. Justify.

For an arbitrary binary operation * on a set N= ∀  N.


Consider the binary operations*: ×→ and o: R × R → defined as a * b = |a - b| and ab = a, &mnForE;ab ∈ R. Show that * is commutative but not associative, o is associative but not commutative. Further, show that &mnForE;abc ∈ Ra*(b o c) = (ab) o (a * c). [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.


Determine whether the following operation define a binary operation on the given set or not : 'O' on Z defined by a O b = ab for all a, b ∈ Z.


Determine whether or not the definition of *given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On Z+, defined * by a * b = ab

Here, Z+ denotes the set of all non-negative integers.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

 On Z+, define * by a * b = a

Here, Z+ denotes the set of all non-negative integers.


Let '*' be a binary operation on N defined by a * b = 1.c.m. (a, b) for all a, b ∈ N

Check the commutativity and associativity of '*' on N.


Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all ab ∈ Z ?


Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?


Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = (a − b)2 for all ab ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by \[a * b = \frac{ab}{4}\] for all ab ∈ Q ?


On Z, the set of all integers, a binary operation * is defined by a * b = a + 3b − 4. Prove that * is neither commutative nor associative on Z.


On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the invertible elements in Z ?


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :

Show that '⊙' is commutative and associative on A ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the invertible element in A ?


For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.


Find the inverse of 5 under multiplication modulo 11 on Z11.


If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.


If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .


On the power set P of a non-empty set A, we define an operation ∆ by

\[X ∆ Y = \left( \overline{X} \cap Y \right) \cup \left( X \cap \overline{Y} \right)\]

Then which are of the following statements is true about ∆.


If the binary operation * on Z is defined by a * b = a2 − b2 + ab + 4, then value of (2 * 3) * 4 is ____________ .


Let * be a binary operation on Q+ defined by \[a * b = \frac{ab}{100} \text{ for all a, b } \in Q^+\] The inverse of 0.1 is _________________ .


Let * be a binary operation on N defined by a * b = a + b + 10 for all ab ∈ N. The identity element for * in N is _____________ .


Let A = ℝ × ℝ and let * be a binary operation on A defined by (a, b) * (c, d) = (ad + bc, bd) for all (a, b), (c, d) ∈ ℝ × ℝ.
(i) Show that * is commutative on A.
(ii) Show that * is associative on A.
(iii) Find the identity element of * in A.


Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`


Choose the correct alternative:

If a * b = `sqrt("a"^2 + "b"^2)` on the real numbers then * is


Let R be the set of real numbers and * be the binary operation defined on R as a * b = a + b – ab ∀ a, b ∈ R. Then, the identity element with respect to the binary operation * is ______.


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a + ab ∀ a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = (a – b)2 ∀ a, b ∈ Q


If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then"  3 "*" (1/5 "*" 1/2)` is equal to ____________.


The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.


Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.


If * is a binary operation on the set of integers I defined by a * b = 3a + 4b - 2, then find the value of 4 * 5.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×