Advertisements
Advertisements
प्रश्न
Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the invertible elements in Z ?
उत्तर
Let a ∈ Z and b ∈ Z be the inverse of a. Then,
\[a * b = e = b * a\]
\[a * b = e \text{ and }b * a = e\]
\[a + b - 4 = 4 \text{ and } b + a - 4 = 4\]
\[b = 8 - a \in Z\]
\[\text{Thus},8 - \text{a is the inverse of a} \in Z . \]
APPEARS IN
संबंधित प्रश्न
Let * be a binary operation, on the set of all non-zero real numbers, given by `a** b = (ab)/5` for all a,b∈ R-{0} that 2*(x*5)=10
Determine whether or not of the definition of ∗ given below gives a binary operation. In the event that ∗ is not a binary operation, give justification for this.
On Z+, define ∗ by a ∗ b = a – b
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = |a − b|
For each binary operation * defined below, determine whether * is commutative or associative.
On Q, define a * b = ab + 1
Given a non-empty set X, let *: P(X) × P(X) → P(X) be defined as A * B = (A − B) ∪ (B −A), &mnForE; A, B ∈ P(X). Show that the empty set Φ is the identity for the operation * and all the elements A of P(X) are invertible with A−1 = A. (Hint: (A − Φ) ∪ (Φ − A) = Aand (A − A) ∪ (A − A) = A * A = Φ).
Determine whether the following operation define a binary operation on the given set or not :
\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\]
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b
Here, Z+ denotes the set of all non-negative integers.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+ define * by a * b = |a − b|
Here, Z+ denotes the set of all non-negative integers.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, define * by a * b = a
Here, Z+ denotes the set of all non-negative integers.
Let '*' be a binary operation on N defined by a * b = 1.c.m. (a, b) for all a, b ∈ N
Check the commutativity and associativity of '*' on N.
Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?
Check the commutativity and associativity of the following binary operations '⊙' on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on R defined by a * b = a + b − 7 for all a, b ∈ R ?
If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].
On the set Q of all ration numbers if a binary operation * is defined by \[a * b = \frac{ab}{5}\] , prove that * is associative on Q.
Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:
Prove that * is a binary operation on S ?
On the set Z of integers, if the binary operation * is defined by a * b = a + b + 2, then find the identity element.
Let * be a binary operation on Q0 (set of non-zero rational numbers) defined by \[a * b = \frac{ab}{5} \text{for all a, b} \in Q_0\]
Show that * is commutative as well as associative. Also, find its identity element if it exists.
Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?
For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.
Find the inverse of 5 under multiplication modulo 11 on Z11.
Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as \[a * b = \begin{cases}a + b & ,\text{ if a + b} < 6 \\ a + b - 6 & , \text{if a + b} \geq 6\end{cases}\]
Show that 0 is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.
If the binary operation * on Z is defined by a * b = a2 − b2 + ab + 4, then value of (2 * 3) * 4 is ____________ .
Mark the correct alternative in the following question:-
For the binary operation * on Z defined by a * b = a + b + 1, the identity element is ________________ .
Subtraction of integers is ___________________ .
Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`
Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.
Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:
* | a | b | c | d |
a | a | c | b | d |
b | d | a | b | c |
c | c | d | a | a |
d | d | b | a | c |
Is it commutative and associative?
Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under *. If so, examine the commutative and associative properties satisfied by * on M
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = a – b for a, b ∈ Q
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a2 + b2 ∀ a, b ∈ Q
Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.
Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.
Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.
Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.
Which of the following is not a binary operation on the indicated set?