हिंदी

Check the Commutativity and Associativity of the Following Binary Operations '*'. On N Defined By A * B = 2ab For All A, B ∈ N ? - Mathematics

Advertisements
Advertisements

प्रश्न

Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?

योग

उत्तर

 Commutativity:

\[\text{Let } a, b \in N . \text{Then}, \]

\[a * b = 2^{ab} \]

\[ = 2^{ba} \]

\[ = b * a\]

\[\text{Therefore},\]

\[a * b = b * a, \forall a, b \in N\]

Thus, * is commutative on N.

Associativity:

\[\text{Let a}, b, c \in N . \text{Then}, \]

\[a * \left( b * c \right) = a * \left( 2^{bc} \right)\]

\[ = 2^{a * 2^{bc}} \]

\[\left( a * b \right) * c = \left( 2^{ab} \right) * c\]

\[ = 2^{ab * 2^c} \]

\[\text{Therefore},\]

\[a * \left( b * c \right) \neq \left( a * b \right) * c\]


Thus, * is not associative on N.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Binary Operations - Exercise 3.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 3 Binary Operations
Exercise 3.2 | Q 4.02 | पृष्ठ १२

संबंधित प्रश्न

Let * be a binary operation, on the set of all non-zero real numbers, given by `a** b = (ab)/5` for all a,b∈ R-{0} that 2*(x*5)=10


Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by a


For each binary operation * defined below, determine whether * is commutative or associative.

On Z, define − b


For each binary operation * defined below, determine whether * is commutative or associative.

On Z+, define ab


Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by = min {ab}. Write the operation table of the operation∨.


Consider the binary operations*: ×→ and o: R × R → defined as a * b = |a - b| and ab = a, &mnForE;ab ∈ R. Show that * is commutative but not associative, o is associative but not commutative. Further, show that &mnForE;abc ∈ Ra*(b o c) = (ab) o (a * c). [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.


Number of binary operations on the set {ab} are

(A) 10

(B) 16

(C) 20

(D) 8


Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.


Find the total number of binary operations on {ab}.


Check the commutativity and associativity of the following binary operation  '*' on R defined by a * b = a + b − 7 for all ab ∈ R ?


On the set Q of all ration numbers if a binary operation * is defined by \[a * b = \frac{ab}{5}\] , prove that * is associative on Q.


Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:

Prove that * is commutative as well as associative ?


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the identity element in Z ?


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that every element of Q − {−1} is invertible. Also, find the inverse of an arbitrary element ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the identity element in A ?


Consider the binary operation 'o' defined by the following tables on set S = {a, bcd}.

o  a b c d
a a a a a
b a b c d
c a c d b
d a d b c

Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


For the binary operation multiplication modulo 5 (×5) defined on the set S = {1, 2, 3, 4}. Write the value of \[\left( 3 \times_5 4^{- 1} \right)^{- 1}.\] 


Let +6 (addition modulo 6) be a binary operation on S = {0, 1, 2, 3, 4, 5}. Write the value of \[2 +_6 4^{- 1} +_6 3^{- 1} .\]


Let * be a binary operation defined by a * b = 3a + 4b − 2. Find 4 * 5.


Let * be a binary operation on N given by a * b = HCF (a, b), a, b ∈ N. Write the value of 22 * 4.


Which of the following is true ?


The binary operation * defined on N by a * b = a + b + ab for all a, b N is ________________ .


Subtraction of integers is ___________________ .


A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .


Consider the binary operation * defined on Q − {1} by the rule
a * b = a + b − ab for all a, b ∈ Q − {1}
The identity element in Q − {1} is _______________ .


On the set Q+ of all positive rational numbers a binary operation * is defined by \[a * b = \frac{ab}{2} \text{ for all, a, b }\in Q^+\]. The inverse of 8 is _________ .


Let A = ℝ × ℝ and let * be a binary operation on A defined by (a, b) * (c, d) = (ad + bc, bd) for all (a, b), (c, d) ∈ ℝ × ℝ.
(i) Show that * is commutative on A.
(ii) Show that * is associative on A.
(iii) Find the identity element of * in A.


If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *


Determine whether * is a binary operation on the sets-given below.

a * b – a.|b| on R


Determine whether * is a binary operation on the sets-given below.

a * b = min (a, b) on A = {1, 2, 3, 4, 5}


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A v B


Choose the correct alternative:

Subtraction is not a binary operation in


Choose the correct alternative:

In the set R of real numbers ‘*’ is defined as follows. Which one of the following is not a binary operation on R?


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b + ab for a, b ∈ Q


If * is a binary operation on the set of integers I defined by a * b = 3a + 4b - 2, then find the value of 4 * 5.


Let * be the binary operation on N given by a * b = HCF (a, b) where, a, b ∈ N. Find the value of 22 * 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×