हिंदी

Define a Binary Operation * on the Set {0, 1, 2, 3, Show that 0 is the Identity for this Operation and Each Element a ≠ 0 of the Set is Invertible with 6 − a Being the Inverse of A. - Mathematics

Advertisements
Advertisements

प्रश्न

Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as \[a * b = \begin{cases}a + b & ,\text{ if a  + b} < 6 \\ a + b - 6 & , \text{if a + b} \geq 6\end{cases}\]

Show that 0 is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.

योग

उत्तर

Here,
1 * 1 =1+1              \[\because\] 1+1 \[<\] 6 )

 = 2                
3 * 4 = 3 + 4 \[-\] 6            ( \[\because\] 3 + 4 \[>\] 6 )
         = 7 \[-\] 6         
         = 1     
4 * 5 = 4 + 5 \[-\] 6        (\[\because\] 4 + 5 \[>\] 6 )
         = 9 \[-\]6            
         = 3 etc. 

So, the composition table is as follows:

* 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

We observe that the first row of the composition table coincides with the top-most row and the first column coincides with the left-most column.
These two intersect at 0.
So, 0 is the identity element .

\[\Rightarrow a * 0 = 0 * a = a, \forall a \in \left\{ 0, 1, 2, 3, 4, 5 \right\}\]

Finding inverse :-

\[\text{Leta} \in \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{ and }b \in \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{ such that}\]
\[a * b = b * a = e\]
\[a * b = e \text{ and }b * a = e\]
Case 1 :- Let us assume that a + b < 6
Then,
\[a * b = e \text { and }b * a = e\]
\[a + b = 0 \text{ and } b + a = 0\]
a = - b, which is not possible because all the elements of the given set are non-negative.

Case 2 :- Let us assume that a + b ≥ 6

Then,

\[a * b = e \text{ and } b * a = e\]
\[a + b - 6 = 0 \text{ and }b + a - 6 = 0\]
b = 6 - a        (from the table we can observe that this is true for all a ≠ 0)
Thus, 6 - a is the inverse of a.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Binary Operations - Exercise 3.5 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 3 Binary Operations
Exercise 3.5 | Q 10 | पृष्ठ ३४

संबंधित प्रश्न

LetA= R × R and * be a binary operation on A defined by (a, b) * (c, d) = (a+c, b+d)

Show that * is commutative and associative. Find the identity element for * on A. Also find the inverse of every element (a, b) ε A.


Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by = min {ab}. Write the operation table of the operation∨.


Let A = × and * be the binary operation on A defined by  (ab) * (cd) = (cd)

Show that * is commutative and associative. Find the identity element for * on A, if any.


Consider the binary operations*: ×→ and o: R × R → defined as a * b = |a - b| and ab = a, &mnForE;ab ∈ R. Show that * is commutative but not associative, o is associative but not commutative. Further, show that &mnForE;abc ∈ Ra*(b o c) = (ab) o (a * c). [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.


Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as

a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`

Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * ba − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.


Determine whether the following operation define a binary operation on the given set or not :

\[' * ' \text{on Q defined by } a * b = \frac{a - 1}{b + 1} \text{for all a, b} \in Q .\]


Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?


Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all ab ∈ Z ?


Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = (a − b)2 for all ab ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Z defined by a * b = a − b for all ab ∈ Z ?


Check the commutativity and associativity of the following binary operation  '*' on Z defined by a * b = a + b − ab for all a, b ∈ Z ?


On Q, the set of all rational numbers, * is defined by \[a * b = \frac{a - b}{2}\] , shown that * is no associative ?


Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:

Prove that * is commutative as well as associative ?


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :

Show that '⊙' is commutative and associative on A ?


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by  \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\]:

Find the invertible elements of Q0 ?


For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.


Define a commutative binary operation on a set.


Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.


Let +6 (addition modulo 6) be a binary operation on S = {0, 1, 2, 3, 4, 5}. Write the value of \[2 +_6 4^{- 1} +_6 3^{- 1} .\]


Let * be a binary operation defined by a * b = 3a + 4b − 2. Find 4 * 5.


If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .


A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .


The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .


Let '*' be a binary operation on N defined by
a * b = 1.c.m. (a, b) for all a, b ∈ N
Find 2 * 4, 3 * 5, 1 * 6.


Examine whether the operation *defined on R by a * b = ab + 1 is (i) a binary or not. (ii) if a binary operation, is it associative or not?


Determine whether * is a binary operation on the sets-given below.

a * b – a.|b| on R


On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?


Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A ∧ B


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A v B) ∧ C


Choose the correct alternative:

Which one of the following is a binary operation on N?


Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?


Let R be the set of real numbers and * be the binary operation defined on R as a * b = a + b – ab ∀ a, b ∈ R. Then, the identity element with respect to the binary operation * is ______.


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a – b ∀ a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = (a – b)2 ∀ a, b ∈ Q


A binary operation on a set has always the identity element.


Subtraction and division are not binary operation on.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×