हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Let A = (101001011001), B = (010110101001), C = (110101101111) be any three boolean matrices of the same type. Find (A v B) ∧ C - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A v B) ∧ C

योग

उत्तर

Given boolean matrices

A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`

B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`

C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))`

 (A v B) ∧ C = `((1, 1, 1, 1),(1, 1, 1, 1),(1, 0, 0,1)) ^^ ((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))`

= `((1 ^^ 1, 1^^ 1, 1 ^^ 0, 1 ^^ 1),(1 ^^ 0, 1^^ 1, 1 ^^ 1, 1 ^^ 0),(1 ^^ 1, 0 ^^ 1, 0 ^^ 1, 1 ^^ 1))`

= `((1, 1, 0, 1),(0, 1, 1, 0),(1, 0, 0, 1))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Discrete Mathematics - Exercise 12.1 [पृष्ठ २३६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 12 Discrete Mathematics
Exercise 12.1 | Q 8. (iii) | पृष्ठ २३६

संबंधित प्रश्न

Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by a


Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as

a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`

Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b

Here, Z+ denotes the set of all non-negative integers.


Find the total number of binary operations on {ab}.


 Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by  \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\]:

Find the invertible elements of Q0 ?


Construct the composition table for +5 on set S = {0, 1, 2, 3, 4}.


For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.


Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.


Let * be a binary operation defined by a * b = 3a + 4b − 2. Find 4 * 5.


If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.


The law a + b = b + a is called _________________ .


An operation * is defined on the set Z of non-zero integers by \[a * b = \frac{a}{b}\]  for all ab ∈ Z. Then the property satisfied is _______________ .


Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`


Fill in the following table so that the binary operation * on A = {a, b, c} is commutative.

* a b c
a b    
b c b a
c a   c

Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A


Let A be Q\{1}. Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the existence of an identity, the existence of inverse properties for the operation * on A


A binary operation on a set has always the identity element.


Let * be a binary operation on set Q – {1} defind by a * b = a + b – ab : a, b ∈ Q – {1}. Then * is ____________.


Which of the following is not a binary operation on the indicated set?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×