हिंदी

Check the Commutativity and Associativity of the Following Binary Operation '*' On Z Defined By A * B = A + B − Ab For All A, B ∈ Z ? - Mathematics

Advertisements
Advertisements

प्रश्न

Check the commutativity and associativity of the following binary operation  '*' on Z defined by a * b = a + b − ab for all a, b ∈ Z ?

योग

उत्तर

 Commutativity :

\[\text{Let }a, b \in Z . \text{Then}, \]

\[a * b = a + b - ab\]

       \[ = b + a - ba\]

       \[ = b * a \]

\[\text{Therefore},\]

\[a * b = b * a, \forall a, b \in Z\]

Thus, * is commutative on Z.

Associativity:

\[\text{Let a}, b, c \in Z . \text{Then}, \]

\[a * \left( b * c \right) = a * \left( b + c - bc \right)\]

\[ = a + b + c - bc - a\left( b + c - bc \right)\]

\[ = a + b + c - bc - ab - ac + abc\]

\[\left( a * b \right) * c = \left( a + b - ab \right) * c\]

\[ = a + b - ab + c - \left( a + b - ab \right)c\]

\[ = a + b + c - ab - ac - bc + abc\]

\[\text{Therefore}\]

\[a * \left( b * c \right) = \left( a * b \right) * c, \forall a, b, c \in Z\]

Thus, * is associative on Z.

shaalaa.com

Notes

The answer given in the textbook is incorrect. The same has been corrected here.

  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Binary Operations - Exercise 3.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 3 Binary Operations
Exercise 3.2 | Q 4.14 | पृष्ठ १२

संबंधित प्रश्न

Determine whether or not of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by ab


Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by a


For each binary operation * defined below, determine whether * is commutative or associative.

On − {−1}, define `a*b = a/(b+1)`


Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * ba − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.


Determine whether the following operation define a binary operation on the given set or not :

\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\] 
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]


Determine whether the following operation define a binary operation on the given set or not : '⊙' on N defined by a ⊙ b= ab + ba for all a, b ∈ N


Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all ab ∈ Z ?


Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = (a − b)2 for all ab ∈ Q ?


On Q, the set of all rational numbers, * is defined by \[a * b = \frac{a - b}{2}\] , shown that * is no associative ?


Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:

Prove that * is a binary operation on S ?


On the set Z of integers, if the binary operation * is defined by a * b = a + b + 2, then find the identity element.


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by   \[a o b = \frac{ab}{2}, \text{for all a, b} \in Q_0\].

Show that 'o' is both commutative and associate ?


For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.


Write the multiplication table for the set of integers modulo 5.


Define a binary operation on a set.


Define an associative binary operation on a set.


Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.


Let +6 (addition modulo 6) be a binary operation on S = {0, 1, 2, 3, 4, 5}. Write the value of \[2 +_6 4^{- 1} +_6 3^{- 1} .\]


Mark the correct alternative in the following question:-

For the binary operation * on Z defined by a * b = a + b + 1, the identity element is ________________ .


If a binary operation * is defined on the set Z of integers as a * b = 3a − b, then the value of (2 * 3) * 4 is ___________ .


The binary operation * defined on N by a * b = a + b + ab for all a, b N is ________________ .


A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .


On the set Q+ of all positive rational numbers a binary operation * is defined by \[a * b = \frac{ab}{2} \text{ for all, a, b }\in Q^+\]. The inverse of 8 is _________ .


Let * be a binary operation defined on Q+ by the rule

\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .


If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *


Examine whether the operation *defined on R by a * b = ab + 1 is (i) a binary or not. (ii) if a binary operation, is it associative or not?


Let * be an operation defined as *: R × R ⟶ R, a * b = 2a + b, a, b ∈ R. Check if * is a binary operation. If yes, find if it is associative too.


On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?


Choose the correct alternative:

In the set R of real numbers ‘*’ is defined as follows. Which one of the following is not a binary operation on R?


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b + ab for a, b ∈ Q


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = ab2 for a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a + ab ∀ a, b ∈ Q


A binary operation on a set has always the identity element.


Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.


Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.


Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.


Determine which of the following binary operation on the Set N are associate and commutaive both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×