हिंदी

Let 'O' Be a Binary Operation on the Set Q0 of All Non-zero Rational Numbers Defined by a O B = a B 2 , for All A, B ∈ Q 0 . Show that 'O' is Both Commutative and Associate ? - Mathematics

Advertisements
Advertisements

प्रश्न

Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by   \[a o b = \frac{ab}{2}, \text{for all a, b} \in Q_0\].

Show that 'o' is both commutative and associate ?

उत्तर

Commutativity :

\[\text{ Let }a, b \in Q_0 . \text{Then}, \] 
\[a o b = \frac{ab}{2}\] 
      \[ = \frac{ba}{2}\] 
      \[ = b o a\] 
\[\text{Therefore},\] 
\[a o b = b o a, \forall a, b \in Q_0\]

Thus, o is commutative on Qo.

Associativity:

\[\text{ Let }a, b, c \in Q_0 . \text{ Then }, \] 
\[a o \left( b o c \right) = a o \left( \frac{bc}{2} \right)\] 
               \[ = \frac{a\left( \frac{bc}{2} \right)}{2}\] 
               \[ = \frac{abc}{4}\] 
\[\left( a o b \right) o c = \left( \frac{ab}{2} \right) o c\] 
               \[ = \frac{\left( \frac{ab}{2} \right)c}{2}\] 
                \[ = \frac{abc}{4}\] 
\[\text{Therefore},\] 
\[a o \left( b o c \right) = \left( a o b \right) o c, \forall a, b, c \in Q_0 \] 

Thus, o is associative on Qo.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Binary Operations - Exercise 3.4 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 3 Binary Operations
Exercise 3.4 | Q 5.1 | पृष्ठ २५

संबंधित प्रश्न

Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) =  (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.

(iii)and hence write the inverse of elements (5, 3) and (1/2,4)


State whether the following statements are true or false. Justify.

For an arbitrary binary operation * on a set N= ∀  N.


Consider the binary operations*: ×→ and o: R × R → defined as a * b = |a - b| and ab = a, &mnForE;ab ∈ R. Show that * is commutative but not associative, o is associative but not commutative. Further, show that &mnForE;abc ∈ Ra*(b o c) = (ab) o (a * c). [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = a + b - 2 for all a, b ∈ N


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b

Here, Z+ denotes the set of all non-negative integers.


Let * be a binary operation on N given by a * b = LCM (a, b) for all a, b ∈ N. Find 5 * 7.


 Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Z defined by a * b = a − b for all ab ∈ Z ?


Check the commutativity and associativity of the following binary operation  '*' on Z defined by a * b = a + b − ab for all a, b ∈ Z ?


The binary operation * is defined by \[a * b = \frac{ab}{7}\] on the set Q of all rational numbers. Show that * is associative.


Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:

Prove that * is a binary operation on S ?


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Show that '*' is both commutative and associative ?


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the invertible elements in Z ?


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :

Find the invertible elements in A ?


Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?


Construct the composition table for ×4 on set S = {0, 1, 2, 3}.


Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.


For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.


For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.


Define an associative binary operation on a set.


Mark the correct alternative in the following question:-

For the binary operation * on Z defined by a * b = a + b + 1, the identity element is ________________ .


Which of the following is true ?


The law a + b = b + a is called _________________ .


For the binary operation * defined on R − {1} by the rule a * b = a + b + ab for all a, b ∈ R − {1}, the inverse of a is ________________ .


The number of binary operation that can be defined on a set of 2 elements is _________ .


If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *


Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A


Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A


Choose the correct alternative:

If a * b = `sqrt("a"^2 + "b"^2)` on the real numbers then * is


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b + ab for a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = (a – b)2 ∀ a, b ∈ Q


Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.


The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.


Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.


Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×