Advertisements
Advertisements
प्रश्न
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = (a – b)2 ∀ a, b ∈ Q
उत्तर
Given that * is a binary operation defined on Q.
a * b = (a – b)2, ∀ a, b ∈Q
b * a = (b –a)2
Since, (a – b)2 = (b – a)2
Thus, * is commutative.
APPEARS IN
संबंधित प्रश्न
Let * be the binary operation on N given by a * b = L.C.M. of a and b. Find
(i) 5 * 7, 20 * 16
(ii) Is * commutative?
(iii) Is * associative?
(iv) Find the identity of * in N
(v) Which elements of N are invertible for the operation *?
Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A
1) Find the identity element in A
2) Find the invertible elements of A.
Determine whether the following operation define a binary operation on the given set or not :
\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\]
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]
Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = ab2 for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?
If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].
Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.
Write the identity element for the binary operation * on the set R0 of all non-zero real numbers by the rule \[a * b = \frac{ab}{2}\] for all a, b ∈ R0.
Define an associative binary operation on a set.
Write the identity element for the binary operation * defined on the set R of all real numbers by the rule
\[a * b = \frac{3ab}{7} \text{ for all a, b} \in R .\] ?
Define identity element for a binary operation defined on a set.
Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.
Let * be a binary operation defined by a * b = 3a + 4b − 2. Find 4 * 5.
If a binary operation * is defined on the set Z of integers as a * b = 3a − b, then the value of (2 * 3) * 4 is ___________ .
If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .
Let * be a binary operation defined on Q+ by the rule
\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .
Consider the binary operation * defined by the following tables on set S = {a, b, c, d}.
* | a | b | c | d |
a | a | b | c | d |
b | b | a | d | c |
c | c | d | a | b |
d | d | c | b | a |
Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.
Examine whether the operation *defined on R by a * b = ab + 1 is (i) a binary or not. (ii) if a binary operation, is it associative or not?
Let * be an operation defined as *: R × R ⟶ R, a * b = 2a + b, a, b ∈ R. Check if * is a binary operation. If yes, find if it is associative too.
Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`
Choose the correct alternative:
If a * b = `sqrt("a"^2 + "b"^2)` on the real numbers then * is
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = ab2 for a, b ∈ Q
A binary operation on a set has always the identity element.
Let * be a binary operation on Q, defined by a * b `= (3"ab")/5` is ____________.
Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.
Determine which of the following binary operation on the Set N are associate and commutaive both.
Subtraction and division are not binary operation on.