Advertisements
Advertisements
प्रश्न
Let * be an operation defined as *: R × R ⟶ R, a * b = 2a + b, a, b ∈ R. Check if * is a binary operation. If yes, find if it is associative too.
उत्तर
Let a, b ∈ R. Then,
a + b ∈ R ......(Addition is a binary operation on R)
⇒ a + (a+ b) ∈ R .........(Addition is a binary operation on R)
⇒ 2a + b ∈ R
Thus, a*b ∈ R for all a, b ∈ R.
Hence, * is a binary operation on R.
Let a, b,c ∈ R
(a * b) * c = (2a + b) * c = 2 (2a+ b) + c = 4a + 2b + c
a* (b * c) = a* (2b + c) = 2a + 2b + c
Since (a * b) * c ≠ a * (b * c),
APPEARS IN
संबंधित प्रश्न
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = a
Let * be a binary operation on the set Q of rational numbers as follows:
(i) a * b = a − b
(ii) a * b = a2 + b2
(iii) a * b = a + ab
(iv) a * b = (a − b)2
(v) a * b = ab/4
(vi) a * b = ab2
Find which of the binary operations are commutative and which are associative.
Find which of the operations given above has identity.
Given a non-empty set X, let *: P(X) × P(X) → P(X) be defined as A * B = (A − B) ∪ (B −A), &mnForE; A, B ∈ P(X). Show that the empty set Φ is the identity for the operation * and all the elements A of P(X) are invertible with A−1 = A. (Hint: (A − Φ) ∪ (Φ − A) = Aand (A − A) ∪ (A − A) = A * A = Φ).
Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as
a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`
Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.
Number of binary operations on the set {a, b} are
(A) 10
(B) 16
(C) 20
(D) 8
Let * be a binary operation on N given by a * b = LCM (a, b) for all a, b ∈ N. Find 5 * 7.
Let A be any set containing more than one element. Let '*' be a binary operation on A defined by a * b = b for all a, b ∈ A Is '*' commutative or associative on A ?
Check the commutativity and associativity of the following binary operation '*' on Z defined by a * b = a − b for all a, b ∈ Z ?
Check the commutativity and associativity of the following binary operation '*' on Q defined by \[a * b = \frac{ab}{4}\] for all a, b ∈ Q ?
Construct the composition table for +5 on set S = {0, 1, 2, 3, 4}.
Write the multiplication table for the set of integers modulo 5.
Consider the binary operation 'o' defined by the following tables on set S = {a, b, c, d}.
o | a | b | c | d |
a | a | a | a | a |
b | a | b | c | d |
c | a | c | d | b |
d | a | d | b | c |
Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.
Write the composition table for the binary operation ×5 (multiplication modulo 5) on the set S = {0, 1, 2, 3, 4}.
A binary operation * is defined on the set R of all real numbers by the rule \[a * b = \sqrt{ a^2 + b^2} \text{for all a, b } \in R .\]
Write the identity element for * on R.
Let * be a binary operation on set of integers I, defined by a * b = 2a + b − 3. Find the value of 3 * 4.
If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .
If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ________________ .
On Z an operation * is defined by a * b = a2 + b2 for all a, b ∈ Z. The operation * on Z is _______________ .
A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .
For the binary operation * defined on R − {1} by the rule a * b = a + b + ab for all a, b ∈ R − {1}, the inverse of a is ________________ .
Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the closure, commutative and associate properties satisfied by * on Q.
Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A
Choose the correct alternative:
Which one of the following is a binary operation on N?
Choose the correct alternative:
In the set R of real numbers ‘*’ is defined as follows. Which one of the following is not a binary operation on R?
Choose the correct alternative:
In the set Q define a ⨀ b = a + b + ab. For what value of y, 3 ⨀ (y ⨀ 5) = 7?
Let R be the set of real numbers and * be the binary operation defined on R as a * b = a + b – ab ∀ a, b ∈ R. Then, the identity element with respect to the binary operation * is ______.
A binary operation on a set has always the identity element.