हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Define an operation * on Q as follows: a * b = ab(a+b2); a, b ∈ Q. Examine the closure, commutative and associate properties satisfied by * on Q. - Mathematics

Advertisements
Advertisements

प्रश्न

Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the closure, commutative and associate properties satisfied by * on Q.

योग

उत्तर

Given a * b = `(("a" + "b")/2)`; a, b ∈ Q

a ∈ Q and b ∈ Q

⇒ a * b = `("a" + "b")/2` ∈ Q

Hence * is a binary operation on Q

a * b = `("a" + "b")/2`

b * a = `("b" + "a")/2`

= `("a" + "b")/2` .......[∵ a + b = b + a]

∴ Binary operation * is commutative

a * (b * c) = a * `(("b" + "c")/2)`

= `("a" + ("b" + "c")/2)/2`

= `(2"a" + "b" + "c")/2`

(a * b) * c = `(("a" + "b")/2)` * c

= `("a" + "b" + 2"c")/4`

So, a * (b * c) ≠ (a * b) * c

Hence, the binary operation * is not associative.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Discrete Mathematics - Exercise 12.1 [पृष्ठ २३५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 12 Discrete Mathematics
Exercise 12.1 | Q 5. (i) | पृष्ठ २३५

संबंधित प्रश्न

For each binary operation * defined below, determine whether * is commutative or associative.

On Z+, define ab


Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A

1) Find the identity element in A

2) Find the invertible elements of A.


Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all ab ∈ Z ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = a + ab for all ab ∈ Q ?


Check the commutativity and associativity of the following binary operation  '*' on R defined by a * b = a + b − 7 for all ab ∈ R ?


The binary operation * is defined by \[a * b = \frac{ab}{7}\] on the set Q of all rational numbers. Show that * is associative.


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by   \[a o b = \frac{ab}{2}, \text{for all a, b} \in Q_0\].

Show that 'o' is both commutative and associate ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the invertible element in A ?


Let A  \[=\] R  \[\times\] R and \[*\]  be a binary operation on defined by \[(a, b) * (c, d) = (a + c, b + d) .\] . Show that \[*\] is commutative and associative. Find the binary element for \[*\] on A, if any.


Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.


Write the multiplication table for the set of integers modulo 5.


Define a commutative binary operation on a set.


Define identity element for a binary operation defined on a set.


Let * be a binary operation on N given by a * b = HCF (a, b), a, b ∈ N. Write the value of 22 * 4.


Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?


Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = (a – b)2 ∀ a, b ∈ Q


If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then"  3 "*" (1/5 "*" 1/2)` is equal to ____________.


The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA  "a, b" in "Q" - {0}` is ____________.


Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×