Advertisements
Advertisements
प्रश्न
Check the commutativity and associativity of the following binary operation '*' on Q defined by \[a * b = \frac{ab}{4}\] for all a, b ∈ Q ?
उत्तर
Commutativity:
\[\text{Let }a, b \in Q . \text{Then}, \]
\[a * b = \frac{ab}{4}\]
\[ = \frac{ba}{4}\]
\[ = b * a \]
\[\text{Therefore},\]
\[a * b = b * a, \forall a, b \in Q\]
Thus, * is commutative on Q.
Associativity :
\[\text{Let}a, b, c \in Q . \text{Then}, \]
\[a * \left( b * c \right) = a * \left( \frac{bc}{4} \right)\]
\[ = \frac{a\left( \frac{bc}{4} \right)}{4}\]
\[ = \frac{abc}{16}\]
\[\left( a * b \right) * c = \left( \frac{ab}{4} \right) * c\]
\[ = \frac{\left( \frac{ab}{4} \right)c}{4}\]
\[ = \frac{abc}{16}\]
\[\text{Therefore},\]
\[a * \left( b * c \right) = \left( a * b \right) * c, \forall a, b, c \in Q\]
Thus, * is associative on Q.
APPEARS IN
संबंधित प्रश्न
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = a
For each binary operation * defined below, determine whether * is commutative or associative.
On R − {−1}, define `a*b = a/(b+1)`
Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.
(i) Compute (2 * 3) * 4 and 2 * (3 * 4)
(ii) Is * commutative?
(iii) Compute (2 * 3) * (4 * 5).
(Hint: use the following table)
* | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 1 | 2 | 1 |
3 | 1 | 1 | 3 | 1 | 1 |
4 | 1 | 2 | 1 | 4 | 1 |
5 | 1 | 1 | 1 | 1 | 5 |
Is * defined on the set {1, 2, 3, 4, 5} by a * b = L.C.M. of a and b a binary operation? Justify your answer.
Let * be a binary operation on the set Q of rational numbers as follows:
(i) a * b = a − b
(ii) a * b = a2 + b2
(iii) a * b = a + ab
(iv) a * b = (a − b)2
(v) a * b = ab/4
(vi) a * b = ab2
Find which of the binary operations are commutative and which are associative.
Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A
1) Find the identity element in A
2) Find the invertible elements of A.
Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On R, define by a*b = ab2
Here, Z+ denotes the set of all non-negative integers.
Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.
Let S = {a, b, c}. Find the total number of binary operations on S.
Prove that the operation * on the set
\[M = \left\{ \begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix}; a, b \in R - \left\{ 0 \right\} \right\}\] defined by A * B = AB is a binary operation.
Let '*' be a binary operation on N defined by a * b = 1.c.m. (a, b) for all a, b ∈ N
Check the commutativity and associativity of '*' on N.
Check the commutativity and associativity of the following binary operations '*'. on Q defined by a * b = a − b for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation 'o' on Q defined by \[\text{a o b }= \frac{ab}{2}\] for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = ab2 for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = (a − b)2 for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?
On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.
Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.
Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Find the identity element in Q − {−1} ?
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\] :
Find the identity element in Q0.
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Show that '*' is both commutative and associative on A ?
Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.
For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.
Write the identity element for the binary operation * defined on the set R of all real numbers by the rule
\[a * b = \frac{3ab}{7} \text{ for all a, b} \in R .\] ?
Let * be a binary operation, on the set of all non-zero real numbers, given by \[a * b = \frac{ab}{5} \text { for all a, b } \in R - \left\{ 0 \right\}\]
Write the value of x given by 2 * (x * 5) = 10.
If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.
If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .
The binary operation * is defined by a * b = a2 + b2 + ab + 1, then (2 * 3) * 2 is equal to ______________ .
A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .
Consider the binary operation * defined by the following tables on set S = {a, b, c, d}.
* | a | b | c | d |
a | a | b | c | d |
b | b | a | d | c |
c | c | d | a | b |
d | d | c | b | a |
Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.
If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *
Determine whether * is a binary operation on the sets-given below.
a * b – a.|b| on R
Determine whether * is a binary operation on the sets-given below.
(a * b) = `"a"sqrt("b")` is binary on R
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A v B
Choose the correct alternative:
A binary operation on a set S is a function from
The identity element for the binary operation * defined on Q ~ {0} as a * b = `"ab"/2` ∀ a, b ∈ Q ~ {0} is ______.
A binary operation on a set has always the identity element.