Advertisements
Advertisements
Question
Check the commutativity and associativity of the following binary operation '*' on Q defined by \[a * b = \frac{ab}{4}\] for all a, b ∈ Q ?
Solution
Commutativity:
\[\text{Let }a, b \in Q . \text{Then}, \]
\[a * b = \frac{ab}{4}\]
\[ = \frac{ba}{4}\]
\[ = b * a \]
\[\text{Therefore},\]
\[a * b = b * a, \forall a, b \in Q\]
Thus, * is commutative on Q.
Associativity :
\[\text{Let}a, b, c \in Q . \text{Then}, \]
\[a * \left( b * c \right) = a * \left( \frac{bc}{4} \right)\]
\[ = \frac{a\left( \frac{bc}{4} \right)}{4}\]
\[ = \frac{abc}{16}\]
\[\left( a * b \right) * c = \left( \frac{ab}{4} \right) * c\]
\[ = \frac{\left( \frac{ab}{4} \right)c}{4}\]
\[ = \frac{abc}{16}\]
\[\text{Therefore},\]
\[a * \left( b * c \right) = \left( a * b \right) * c, \forall a, b, c \in Q\]
Thus, * is associative on Q.
APPEARS IN
RELATED QUESTIONS
Let * be a binary operation, on the set of all non-zero real numbers, given by `a** b = (ab)/5` for all a,b∈ R-{0} that 2*(x*5)=10
Determine whether or not of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = ab
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = |a − b|
For each binary operation * defined below, determine whether * is commutative or associative.
On Q, define a * b = `(ab)/2`
For each binary operation * defined below, determine whether * is commutative or associative.
On Z+, define a * b = 2ab
Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by a ∨b = min {a, b}. Write the operation table of the operation∨.
Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.
(i) Compute (2 * 3) * 4 and 2 * (3 * 4)
(ii) Is * commutative?
(iii) Compute (2 * 3) * (4 * 5).
(Hint: use the following table)
* | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 1 | 2 | 1 |
3 | 1 | 1 | 3 | 1 | 1 |
4 | 1 | 2 | 1 | 4 | 1 |
5 | 1 | 1 | 1 | 1 | 5 |
Let*′ be the binary operation on the set {1, 2, 3, 4, 5} defined by a *′ b = H.C.F. of a and b. Is the operation *′ same as the operation * defined in Exercise 4 above? Justify your answer.
Determine whether or not the definition of *given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = ab
Here, Z+ denotes the set of all non-negative integers.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+ define * by a * b = |a − b|
Here, Z+ denotes the set of all non-negative integers.
Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?
Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all a, b ∈ Z ?
Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative ?
Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.
Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that '*' is both commutative and associative on Q − {−1}.
Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :
Find the identity element in A ?
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{for all a, b} \in Q_0\].
Show that 'o' is both commutative and associate ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the invertible element in A ?
Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.
For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.
Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as \[a * b = \begin{cases}a + b & ,\text{ if a + b} < 6 \\ a + b - 6 & , \text{if a + b} \geq 6\end{cases}\]
Show that 0 is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.
Define a binary operation on a set.
Let * be a binary operation, on the set of all non-zero real numbers, given by \[a * b = \frac{ab}{5} \text { for all a, b } \in R - \left\{ 0 \right\}\]
Write the value of x given by 2 * (x * 5) = 10.
Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.
For the binary operation multiplication modulo 10 (×10) defined on the set S = {1, 3, 7, 9}, write the inverse of 3.
A binary operation * is defined on the set R of all real numbers by the rule \[a * b = \sqrt{ a^2 + b^2} \text{for all a, b } \in R .\]
Write the identity element for * on R.
If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .
A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .
Let * be a binary operation on Q+ defined by \[a * b = \frac{ab}{100} \text{ for all a, b } \in Q^+\] The inverse of 0.1 is _________________ .
Let * be a binary operation on N defined by a * b = a + b + 10 for all a, b ∈ N. The identity element for * in N is _____________ .
Let A = ℝ × ℝ and let * be a binary operation on A defined by (a, b) * (c, d) = (ad + bc, bd) for all (a, b), (c, d) ∈ ℝ × ℝ.
(i) Show that * is commutative on A.
(ii) Show that * is associative on A.
(iii) Find the identity element of * in A.
Let * be an operation defined as *: R × R ⟶ R, a * b = 2a + b, a, b ∈ R. Check if * is a binary operation. If yes, find if it is associative too.
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A v B
Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A
Choose the correct alternative:
If a * b = `sqrt("a"^2 + "b"^2)` on the real numbers then * is
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.
The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA "a, b" in "Q" - {0}` is ____________.
Determine which of the following binary operation on the Set N are associate and commutaive both.