Advertisements
Advertisements
प्रश्न
On the power set P of a non-empty set A, we define an operation ∆ by
\[X ∆ Y = \left( \overline{X} \cap Y \right) \cup \left( X \cap \overline{Y} \right)\]
Then which are of the following statements is true about ∆.
विकल्प
commutative and associative without an identity
commutative but not associative with an identity
associative but not commutative without an identity
associative and commutative with an identity
उत्तर
Associative and commutative with an identity
\[\text{ Commutativity }: \]
\[X ∆ Y = \left( \overline{X} \cap Y \right) \cup \left( X \cap \overline{Y} \right)\]
\[ = \left( \overline{Y} \cap X \right) \cup \left( Y \cap\overline{ X} \right)\]
\[ = Y ∆ X\]
\[\text{ Thus }, \]
\[X ∆ Y = Y ∆ X\]
\[\text{ Hence, ∆ is commutative on A } .\]
Let \[\phi\] be the identity element for \[∆\] on P.
\[A ∆ \phi = \left( \overline{A} \cap \phi \right) \cup \left( A \cap \overline{\phi} \right)\]
\[ = \phi \cup A\]
\[ = A\]
\[\text{ and }, \]
\[\phi ∆ A = \left( \overline{\phi} \cap A \right) \cup \left( \phi \cap \overline{A} \right)\]
\[ = A \cup \phi\]
\[ = A\]
APPEARS IN
संबंधित प्रश्न
Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) = (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.
(iii)and hence write the inverse of elements (5, 3) and (1/2,4)
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On R, define * by a * b = ab2
For each binary operation * defined below, determine whether * is commutative or associative.
On Z, define a * b = a − b
Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by a ∨b = min {a, b}. Write the operation table of the operation∨.
Consider the binary operations*: R ×R → and o: R × R → R defined as a * b = |a - b| and ao b = a, &mnForE;a, b ∈ R. Show that * is commutative but not associative, o is associative but not commutative. Further, show that &mnForE;a, b, c ∈ R, a*(b o c) = (a* b) o (a * c). [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.
Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as
a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`
Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.
Number of binary operations on the set {a, b} are
(A) 10
(B) 16
(C) 20
(D) 8
Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A
1) Find the identity element in A
2) Find the invertible elements of A.
Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by
a ×6 b = Remainder when ab is divided by 6.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, define * by a * b = a
Here, Z+ denotes the set of all non-negative integers.
Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?
Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.
Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the identity element in Z ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the identity element in A ?
Construct the composition table for ×4 on set S = {0, 1, 2, 3}.
Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.
For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.
Define a binary operation on a set.
Let * be a binary operation, on the set of all non-zero real numbers, given by \[a * b = \frac{ab}{5} \text { for all a, b } \in R - \left\{ 0 \right\}\]
Write the value of x given by 2 * (x * 5) = 10.
If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .
Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all a, b ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .
Which of the following is true ?
Let * be a binary operation on R defined by a * b = ab + 1. Then, * is _________________ .
An operation * is defined on the set Z of non-zero integers by \[a * b = \frac{a}{b}\] for all a, b ∈ Z. Then the property satisfied is _______________ .
A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .
On the set Q+ of all positive rational numbers a binary operation * is defined by \[a * b = \frac{ab}{2} \text{ for all, a, b }\in Q^+\]. The inverse of 8 is _________ .
If * is defined on the set R of all real numbers by *: a*b = `sqrt(a^2 + b^2 ) `, find the identity elements, if it exists in R with respect to * .
Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`
Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A ∧ B) v C
Let A be Q\{1}. Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the existence of an identity, the existence of inverse properties for the operation * on A
Choose the correct alternative:
Which one of the following is a binary operation on N?
In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?
Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a + ab ∀ a, b ∈ Q
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = (a – b)2 ∀ a, b ∈ Q
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.