हिंदी

On the Power Set P of a Non-empty Set A, We Define an Operation ∆ by - Mathematics

Advertisements
Advertisements

प्रश्न

On the power set P of a non-empty set A, we define an operation ∆ by

\[X ∆ Y = \left( \overline{X} \cap Y \right) \cup \left( X \cap \overline{Y} \right)\]

Then which are of the following statements is true about ∆.

विकल्प

  • commutative and associative without an identity

  • commutative but not associative with an identity

  • associative but not commutative without an identity

  • associative and commutative with an identity

MCQ

उत्तर

Associative and commutative with an identity

\[\text{ Commutativity }: \]
\[X ∆ Y = \left( \overline{X} \cap Y \right) \cup \left( X \cap \overline{Y} \right)\]
\[ = \left( \overline{Y} \cap X \right) \cup \left( Y \cap\overline{ X} \right)\]
\[ = Y ∆ X\]
\[\text{ Thus }, \]
\[X ∆ Y = Y ∆ X\]
\[\text{ Hence, ∆ is commutative on A } .\] 

Let \[\phi\] be the identity element for \[∆\] on P.

\[A ∆ \phi = \left( \overline{A} \cap \phi \right) \cup \left( A \cap \overline{\phi} \right)\]
      \[ = \phi \cup A\]
      \[ = A\]
\[\text{ and }, \]
\[\phi ∆ A = \left( \overline{\phi} \cap A \right) \cup \left( \phi \cap \overline{A} \right)\]
      \[ = A \cup \phi\]
      \[ = A\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Binary Operations - Exercise 3.7 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 3 Binary Operations
Exercise 3.7 | Q 3 | पृष्ठ ३७

संबंधित प्रश्न

Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) =  (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.

(iii)and hence write the inverse of elements (5, 3) and (1/2,4)


Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On R, define * by ab2


For each binary operation * defined below, determine whether * is commutative or associative.

On Z, define − b


Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by = min {ab}. Write the operation table of the operation∨.


Consider the binary operations*: ×→ and o: R × R → defined as a * b = |a - b| and ab = a, &mnForE;ab ∈ R. Show that * is commutative but not associative, o is associative but not commutative. Further, show that &mnForE;abc ∈ Ra*(b o c) = (ab) o (a * c). [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.


Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as

a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`

Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Number of binary operations on the set {ab} are

(A) 10

(B) 16

(C) 20

(D) 8


Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A

1) Find the identity element in A

2) Find the invertible elements of A.


Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by

a ×6 b = Remainder when ab is divided by 6.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

 On Z+, define * by a * b = a

Here, Z+ denotes the set of all non-negative integers.


Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?


Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the identity element in Z ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the identity element in A ?


Construct the composition table for ×4 on set S = {0, 1, 2, 3}.


Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.


For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.


Define a binary operation on a set.


Let * be a binary operation, on the set of all non-zero real numbers, given by \[a * b = \frac{ab}{5} \text { for all a, b } \in R - \left\{ 0 \right\}\]

Write the value of x given by 2 * (x * 5) = 10.


If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .


Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all ab ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .


Which of the following is true ?


Let * be a binary operation on R defined by a * b = ab + 1. Then, * is _________________ .


An operation * is defined on the set Z of non-zero integers by \[a * b = \frac{a}{b}\]  for all ab ∈ Z. Then the property satisfied is _______________ .


A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .


On the set Q+ of all positive rational numbers a binary operation * is defined by \[a * b = \frac{ab}{2} \text{ for all, a, b }\in Q^+\]. The inverse of 8 is _________ .


If * is defined on the set R of all real numbers by *: a*b = `sqrt(a^2 + b^2 ) `, find the identity elements, if it exists in R with respect to * .


Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`


Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A ∧ B) v C


Let A be Q\{1}. Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the existence of an identity, the existence of inverse properties for the operation * on A


Choose the correct alternative:

Which one of the following is a binary operation on N?


In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?


Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a + ab ∀ a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = (a – b)2 ∀ a, b ∈ Q


The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×