हिंदी

Find the Identity Element in the Set I+ of All Positive Integers Defined by a * B = a + B for All A, B ∈ I+. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.

योग

उत्तर

Let e be the identity element in I+ with respect to * such that

\[a * e = a = e * a, \forall a \in I^+ \] 
\[a * e = a\text{ and }e * a = a, \forall a \in I^+ \] 
\[a + e = a \text{ and }e + a = a, \forall a \in I^+ \] 
\[e = 0 , \forall a \in I^+\]

Thus, 0 is the identity element in I+ with respect to *.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Binary Operations - Exercise 3.3 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 3 Binary Operations
Exercise 3.3 | Q 1 | पृष्ठ १५

संबंधित प्रश्न

Is * defined on the set {1, 2, 3, 4, 5} by = L.C.M. of and a binary operation? Justify your answer.


Given a non-empty set X, consider the binary operation *: P(X) × P(X) → P(X) given by A * B = A ∩ B &mnForE; AB in P(X) is the power set of X. Show that is the identity element for this operation and is the only invertible element in P(X) with respect to the operation*.


Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A

1) Find the identity element in A

2) Find the invertible elements of A.


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.


Determine whether the following operation define a binary operation on the given set or not :

\[' * ' \text{on Q defined by } a * b = \frac{a - 1}{b + 1} \text{for all a, b} \in Q .\]


The binary operation * : R × R → R is defined as a * b = 2a + b. Find (2 * 3) * 4.


Let * be a binary operation on N given by a * b = LCM (a, b) for all a, b ∈ N. Find 5 * 7.


Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all ab ∈ Z ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = ab2 for all ab ∈ Q ?


Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative ?


On Q, the set of all rational numbers, * is defined by \[a * b = \frac{a - b}{2}\] , shown that * is no associative ?


On the set Q of all ration numbers if a binary operation * is defined by \[a * b = \frac{ab}{5}\] , prove that * is associative on Q.


If the binary operation * on the set Z is defined by a * b = a + b −5, the find the identity element with respect to *.


On the set Z of integers, if the binary operation * is defined by a * b = a + b + 2, then find the identity element.


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by  \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\]:

Find the invertible elements of Q0 ?


Construct the composition table for ×4 on set S = {0, 1, 2, 3}.


Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.


Write the multiplication table for the set of integers modulo 5.


Write the identity element for the binary operation * on the set R0 of all non-zero real numbers by the rule \[a * b = \frac{ab}{2}\] for all ab ∈ R0.


Define a binary operation on a set.


Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.


Let * be a binary operation on N given by a * b = HCF (a, b), a, b ∈ N. Write the value of 22 * 4.


If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .


If G is the set of all matrices of the form

\[\begin{bmatrix}x & x \\ x & x\end{bmatrix}, \text{where x } \in R - \left\{ 0 \right\}\] then the identity element with respect to the multiplication of matrices as binary operation, is ______________ .


Subtraction of integers is ___________________ .


On Z an operation * is defined by a * b = a2 + b2 for all a, b ∈ Z. The operation * on Z is _______________ .


A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .


The number of binary operation that can be defined on a set of 2 elements is _________ .


Consider the binary operation * defined by the following tables on set S = {a, bcd}.

a b c  d
a a b c d
b b a d c
c c d a b
d d c b a


Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


If * is defined on the set R of all real numbers by *: a*b = `sqrt(a^2 + b^2 ) `, find the identity elements, if it exists in R with respect to * .


Determine whether * is a binary operation on the sets-given below.

a * b = min (a, b) on A = {1, 2, 3, 4, 5}


Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A


Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under *. If so, examine the commutative and associative properties satisfied by * on M


Choose the correct alternative:

A binary operation on a set S is a function from


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b for a, b ∈ Q


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = `"ab"/4` for a, b ∈ Q.


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = ab2 for a, b ∈ Q


The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA  "a, b" in "Q" - {0}` is ____________.


Subtraction and division are not binary operation on.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×