मराठी

Determine Whether Or Not Definition of *Given Below Gives a Binary Operation. in the Event that * is Not a Binary Operation Give Justification of This. On Z+, Defined * By A * B = Ab Here, Z+ - Mathematics

Advertisements
Advertisements

प्रश्न

Determine whether or not the definition of *given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On Z+, defined * by a * b = ab

Here, Z+ denotes the set of all non-negative integers.

बेरीज

उत्तर

\[a, b \in Z^+ \] 
\[ \Rightarrow ab \in Z^+ \] 
\[ \Rightarrow a * b \in Z^+ \] 
\[\text{Therefore},\] 
\[a * b \in Z^+ , \forall a, b \in Z^+ \] 
\[\text{Thus}, * \text{ is a binary operation on } Z^+ .\] 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Binary Operations - Exercise 3.1 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 3 Binary Operations
Exercise 3.1 | Q 2.2 | पृष्ठ ४

संबंधित प्रश्‍न

Determine whether the following operation define a binary operation on the given set or not : 'O' on Z defined by a O b = ab for all a, b ∈ Z.


Determine whether the following operation define a binary operation on the given set or not : '⊙' on N defined by a ⊙ b= ab + ba for all a, b ∈ N


Prove that the operation * on the set

\[M = \left\{ \begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix}; a, b \in R - \left\{ 0 \right\} \right\}\] defined by A * B = AB is a binary operation.


Check the commutativity and associativity of the following binary operation '*' on N, defined by a * b = ab for all ab ∈ N ?


On Q, the set of all rational numbers, * is defined by \[a * b = \frac{a - b}{2}\] , shown that * is no associative ?


Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.


Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the invertible elements in Z ?


Let * be a binary operation on Q0 (set of non-zero rational numbers) defined by \[a * b = \frac{ab}{5} \text{for all a, b} \in Q_0\]

 Show that * is commutative as well as associative. Also, find its identity element if it exists.


Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?


Construct the composition table for ×4 on set S = {0, 1, 2, 3}.


Construct the composition table for +5 on set S = {0, 1, 2, 3, 4}.


Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.


For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.


For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.


Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.


Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.


Let * be a binary operation defined by a * b = 3a + 4b − 2. Find 4 * 5.


Mark the correct alternative in the following question:-

For the binary operation * on Z defined by a * b = a + b + 1, the identity element is ________________ .


If G is the set of all matrices of the form

\[\begin{bmatrix}x & x \\ x & x\end{bmatrix}, \text{where x } \in R - \left\{ 0 \right\}\] then the identity element with respect to the multiplication of matrices as binary operation, is ______________ .


Let * be a binary operation on R defined by a * b = ab + 1. Then, * is _________________ .


Let * be a binary operation on N defined by a * b = a + b + 10 for all ab ∈ N. The identity element for * in N is _____________ .


For the binary operation * defined on R − {1} by the rule a * b = a + b + ab for all a, b ∈ R − {1}, the inverse of a is ________________ .


For the multiplication of matrices as a binary operation on the set of all matrices of the form \[\begin{bmatrix}a & b \\ - b & a\end{bmatrix}\] a, b ∈ R the inverse of \[\begin{bmatrix}2 & 3 \\ - 3 & 2\end{bmatrix}\] is ___________________ .


The number of binary operation that can be defined on a set of 2 elements is _________ .


If * is defined on the set R of all real numbers by *: a*b = `sqrt(a^2 + b^2 ) `, find the identity elements, if it exists in R with respect to * .


Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under * . If so, examine the existence of identity, existence of inverse properties for the operation * on M


Choose the correct alternative:

Subtraction is not a binary operation in


Choose the correct alternative:

In the set R of real numbers ‘*’ is defined as follows. Which one of the following is not a binary operation on R?


Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?


In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?


Let R be the set of real numbers and * be the binary operation defined on R as a * b = a + b – ab ∀ a, b ∈ R. Then, the identity element with respect to the binary operation * is ______.


If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then"  3 "*" (1/5 "*" 1/2)` is equal to ____________.


Let * be a binary operation on set Q – {1} defind by a * b = a + b – ab : a, b ∈ Q – {1}. Then * is ____________.


The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA  "a, b" in "Q" - {0}` is ____________.


Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.


A binary operation A × A → is said to be associative if:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×