Advertisements
Advertisements
प्रश्न
On Q, the set of all rational numbers, * is defined by \[a * b = \frac{a - b}{2}\] , shown that * is no associative ?
उत्तर
\[\text{Let }a, b, c \in Q . \text{Then}, \]
\[a * \left( b * c \right) = a * \left( \frac{b - c}{2} \right)\]
\[ = \frac{a - \left( \frac{b - c}{2} \right)}{2}\]
\[ = \frac{2a - b + c}{4}\]
\[\left( a * b \right) * c = \left( \frac{a - b}{2} \right) * c\]
\[ = \frac{\left( \frac{a - b}{2} \right) - c}{2}\]
\[ = \frac{a - b - 2c}{4}\]
\[\text{Thus, a} * \left( b * c \right) \neq \left( a * b \right) * c\]
\[\text{If a} = 1, b = 2, c = 3 \]
\[1 * \left( 2 * 3 \right) = 1 * \left( \frac{2 - 3}{2} \right)\]
\[ = 1 * \frac{- 1}{2}\]
\[ = \frac{1 + \frac{1}{2}}{2}\]
\[ = \frac{3}{4}\]
\[\left( 1 * 2 \right) * 3 = \left( \frac{1 - 2}{2} \right) * 3\]
\[ = \frac{- 1}{2} * 3\]
\[ = \frac{\frac{- 1}{2} - 3}{2}\]
\[ = \frac{- 7}{4}\]
\[\text{Therefore}, \exists \text{ a} = 1, b = 2, c = 3 \in \text{R such that a} * \left( b * c \right) \neq \left( a * b \right) * c\]
Thus, * is not associative on Q.
APPEARS IN
संबंधित प्रश्न
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = a
For each binary operation * defined below, determine whether * is commutative or associative.
On Q, define a * b = `(ab)/2`
For each binary operation * defined below, determine whether * is commutative or associative.
On Z+, define a * b = 2ab
Consider a binary operation * on N defined as a * b = a3 + b3. Choose the correct answer.
(A) Is * both associative and commutative?
(B) Is * commutative but not associative?
(C) Is * associative but not commutative?
(D) Is * neither commutative nor associative?
Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as
a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`
Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, define * by a * b = a
Here, Z+ denotes the set of all non-negative integers.
Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?
The binary operation * is defined by \[a * b = \frac{ab}{7}\] on the set Q of all rational numbers. Show that * is associative.
Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that '*' is both commutative and associative on Q − {−1}.
Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that every element of Q − {−1} is invertible. Also, find the inverse of an arbitrary element ?
Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :
Find the invertible elements in A ?
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\] :
Find the identity element in Q0.
Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?
Let A \[=\] R \[\times\] R and \[*\] be a binary operation on A defined by \[(a, b) * (c, d) = (a + c, b + d) .\] . Show that \[*\] is commutative and associative. Find the binary element for \[*\] on A, if any.
Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.
On the set Z of all integers a binary operation * is defined by a * b = a + b + 2 for all a, b ∈ Z. Write the inverse of 4.
Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.
If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.
If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .
Mark the correct alternative in the following question:-
For the binary operation * on Z defined by a * b = a + b + 1, the identity element is ________________ .
If G is the set of all matrices of the form
\[\begin{bmatrix}x & x \\ x & x\end{bmatrix}, \text{where x } \in R - \left\{ 0 \right\}\] then the identity element with respect to the multiplication of matrices as binary operation, is ______________ .
Let * be a binary operation on R defined by a * b = ab + 1. Then, * is _________________ .
An operation * is defined on the set Z of non-zero integers by \[a * b = \frac{a}{b}\] for all a, b ∈ Z. Then the property satisfied is _______________ .
Consider the binary operation * defined on Q − {1} by the rule
a * b = a + b − ab for all a, b ∈ Q − {1}
The identity element in Q − {1} is _______________ .
For the binary operation * defined on R − {1} by the rule a * b = a + b + ab for all a, b ∈ R − {1}, the inverse of a is ________________ .
If * is defined on the set R of all real numbers by *: a*b = `sqrt(a^2 + b^2 ) `, find the identity elements, if it exists in R with respect to * .
If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *
Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A
Choose the correct alternative:
Subtraction is not a binary operation in
Choose the correct alternative:
Which one of the following is a binary operation on N?
Choose the correct alternative:
In the set R of real numbers ‘*’ is defined as follows. Which one of the following is not a binary operation on R?
Choose the correct alternative:
If a * b = `sqrt("a"^2 + "b"^2)` on the real numbers then * is
A binary operation on a set has always the identity element.
Let * be a binary operation on Q, defined by a * b `= (3"ab")/5` is ____________.
Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.
Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.
Let * be the binary operation on N given by a * b = HCF (a, b) where, a, b ∈ N. Find the value of 22 * 4.
Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.
Determine which of the following binary operation on the Set N are associate and commutaive both.