मराठी

Let a = R × R and ∗ Be a Binary Operation on a Defined by ( a , B ) ∗ ( C , D ) = ( a + C , B + D ) . . Show that ∗ is Commutative and Associative. Find the Binary Element for ∗ - Mathematics

Advertisements
Advertisements

प्रश्न

Let A  \[=\] R  \[\times\] R and \[*\]  be a binary operation on defined by \[(a, b) * (c, d) = (a + c, b + d) .\] . Show that \[*\] is commutative and associative. Find the binary element for \[*\] on A, if any.

बेरीज

उत्तर

We have,

A \[=\] R \[\times\] and \[*\] is a binary operation on A defined by \[\left( a, b \right) * \left( c, d \right) = \left( a + c, b + d \right)\]

Now,

 \[\left( a, b \right) * \left( c, d \right) = \left( a + c, b + d \right) = \left( c + a, d + b \right)\] 
\[ \Rightarrow \left( a, b \right) * \left( c, d \right) = \left( c, d \right) * \left( a, b \right)\]

So, \[*\] is commutative.

Also,
\[\left( a, b \right) * \left[ \left( c, d \right) * \left( e, f \right) \right] = \left( a, b \right) * \left( c + e, d + f \right)\] 
\[ = \left( a, b \right) * \left( c + e, d + f \right)\] 
\[ = \left( a + c + e, b + d + f \right)\] 
\[ = \left( a + c, b + d \right) * \left( e, f \right)\] 
\[ = \left[ \left( a, b \right) * \left( c, d \right) \right] * \left( e, f \right)\] 
\[ \Rightarrow \left( a, b \right) * \left[ \left( c, d \right) * \left( e, f \right) \right] = \left[ \left( a, b \right) * \left( c, d \right) \right] * \left( e, f \right)\]
So,  \[*\] is associative .
Let (xy) be the binary element for \[*\] on .
\[\left( a, b \right) * \left( x, y \right) = \left( a, b \right) = \left( x, y \right) * \left( a, b \right)\] 
\[ \Rightarrow \left( a + x, b + y \right) = \left( a, b \right)\] 
\[ \Rightarrow a + x = a\text{ and } b + y = b\] 
\[ \Rightarrow x = 0 \text{ and } y = 0\]
Hence, (0, 0) is the binary element for \[*\] on A.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Binary Operations - Exercise 3.4 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 3 Binary Operations
Exercise 3.4 | Q 9 | पृष्ठ २५

संबंधित प्रश्‍न

Let * be a binary operation, on the set of all non-zero real numbers, given by `a** b = (ab)/5` for all a,b∈ R-{0} that 2*(x*5)=10


For each binary operation * defined below, determine whether * is commutative or associative.

On Z+, define = 2ab


Let * be the binary operation on given by a * = L.C.M. of and b. Find

(i) 5 * 7, 20 * 16

(ii) Is * commutative?

(iii) Is * associative?

(iv) Find the identity of * in N

(v) Which elements of are invertible for the operation *?


State whether the following statements are true or false. Justify.

For an arbitrary binary operation * on a set N= ∀  N.


Given a non-empty set X, let *: P(X) × P(X) → P(X) be defined as A * B = (A − B) ∪ (B −A), &mnForE; AB ∈ P(X). Show that the empty set Φ is the identity for the operation * and all the elements A of P(X) are invertible with A−1 = A. (Hint: (A − Φ) ∪ (Φ − A) = Aand (A − A) ∪ (A − A) = A * A = Φ).


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.


Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by

a ×6 b = Remainder when ab is divided by 6.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b

Here, Z+ denotes the set of all non-negative integers.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

 On Z+, define * by a * b = a

Here, Z+ denotes the set of all non-negative integers.


Let A be any set containing more than one element. Let '*' be a binary operation on A defined by a * b = b for all a, b ∈ A Is '*' commutative or associative on A ?


Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all ab ∈ Z ?


Check the commutativity and associativity of the following binary operation  '*' on R defined by a * b = a + b − 7 for all ab ∈ R ?


On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.


Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:

Prove that * is commutative as well as associative ?


Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.


On the set Z of integers, if the binary operation * is defined by a * b = a + b + 2, then find the identity element.


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that every element of Q − {−1} is invertible. Also, find the inverse of an arbitrary element ?


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (ab) ⊙ (cd) = (acbc + d) for all (ab), (cd) ∈ R0 × R :

Find the identity element in A ?

 


For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.


Define identity element for a binary operation defined on a set.


For the binary operation multiplication modulo 10 (×10) defined on the set S = {1, 3, 7, 9}, write the inverse of 3.


If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .


On the power set P of a non-empty set A, we define an operation ∆ by

\[X ∆ Y = \left( \overline{X} \cap Y \right) \cup \left( X \cap \overline{Y} \right)\]

Then which are of the following statements is true about ∆.


Let * be a binary operation on R defined by a * b = ab + 1. Then, * is _________________ .


A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .


For the binary operation * defined on R − {1} by the rule a * b = a + b + ab for all a, b ∈ R − {1}, the inverse of a is ________________ .


Let * be a binary operation defined on Q+ by the rule

\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .


Let A = ℝ × ℝ and let * be a binary operation on A defined by (a, b) * (c, d) = (ad + bc, bd) for all (a, b), (c, d) ∈ ℝ × ℝ.
(i) Show that * is commutative on A.
(ii) Show that * is associative on A.
(iii) Find the identity element of * in A.


If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *


Fill in the following table so that the binary operation * on A = {a, b, c} is commutative.

* a b c
a b    
b c b a
c a   c

Choose the correct alternative:

If a * b = `sqrt("a"^2 + "b"^2)` on the real numbers then * is


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = ab2 for a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a – b ∀ a, b ∈ Q


Let * be a binary operation on set Q – {1} defind by a * b = a + b – ab : a, b ∈ Q – {1}. Then * is ____________.


The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA  "a, b" in "Q" - {0}` is ____________.


Which of the following is not a binary operation on the indicated set?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×