मराठी

For the Binary Operation Multiplication Modulo 10 (×10) Defined on the Set S = {1, 3, 7, 9}, Write the Inverse of 3. - Mathematics

Advertisements
Advertisements

प्रश्न

For the binary operation multiplication modulo 10 (×10) defined on the set S = {1, 3, 7, 9}, write the inverse of 3.

बेरीज

उत्तर

Here,

1 \[\times_{10}\] 1 = Remainder obtained by dividing 1 \[\times\] 1 by 10
             = 1

3 \[\times_{10}\] 1 = Remainder obtained by dividing 3 \[\times\] 1 by 10
            = 3

7 \[\times_{10}\] 3 = Remainder obtained by dividing 7 \[\times\] 3 by 10
             = 1

3 \[\times_{10}\] 3 = Remainder obtained by dividing 3 \[\times\] 3 by 10
             = 9

So, the composition table is as follows

×10 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

We observe that the first row of the composition table coincides with the top-most row and the first column coincides with the left-most column.

These two intersect at 1.

\[\Rightarrow a * 1 = 1 * a = a, \forall a \in S\]

So, the identity element is 1.

Also,
3 \[\times_{10}\] 7 = 1

3-1 = 7

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Binary Operations - Exercise 3.6 [पृष्ठ ३६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 3 Binary Operations
Exercise 3.6 | Q 12 | पृष्ठ ३६

संबंधित प्रश्‍न

Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.


Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) =  (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.

(iii)and hence write the inverse of elements (5, 3) and (1/2,4)


Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On R, define * by ab2


Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by = |− b|


Let A = × and * be the binary operation on A defined by  (ab) * (cd) = (cd)

Show that * is commutative and associative. Find the identity element for * on A, if any.


Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as

a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`

Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by

a ×6 b = Remainder when ab is divided by 6.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

 On Z+, define * by a * b = a

Here, Z+ denotes the set of all non-negative integers.


Let S be the set of all rational numbers of the form \[\frac{m}{n}\] , where m ∈ Z and n = 1, 2, 3. Prove that * on S defined by a * b = ab is not a binary operation.


Prove that the operation * on the set

\[M = \left\{ \begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix}; a, b \in R - \left\{ 0 \right\} \right\}\] defined by A * B = AB is a binary operation.


Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?


Check the commutativity and associativity of the following binary operation  '*' on R defined by a * b = a + b − 7 for all ab ∈ R ?


If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].


Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.


Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Show that '*' is both commutative and associative ?


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by  \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\]:

Find the invertible elements of Q0 ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the invertible element in A ?


Consider the binary operation 'o' defined by the following tables on set S = {a, bcd}.

o  a b c d
a a a a a
b a b c d
c a c d b
d a d b c

Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


Define a binary operation on a set.


Define an associative binary operation on a set.


Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.


Let * be a binary operation defined by a * b = 3a + 4b − 2. Find 4 * 5.


Let * be a binary operation on N given by a * b = HCF (a, b), a, b ∈ N. Write the value of 22 * 4.


If the binary operation * on Z is defined by a * b = a2 − b2 + ab + 4, then value of (2 * 3) * 4 is ____________ .


Q+ denote the set of all positive rational numbers. If the binary operation a ⊙ on Q+ is defined as \[a \odot = \frac{ab}{2}\] ,then the inverse of 3 is __________ .


If G is the set of all matrices of the form

\[\begin{bmatrix}x & x \\ x & x\end{bmatrix}, \text{where x } \in R - \left\{ 0 \right\}\] then the identity element with respect to the multiplication of matrices as binary operation, is ______________ .


Let * be a binary operation defined on set Q − {1} by the rule a * b = a + b − ab. Then, the identify element for * is ____________ .


Subtraction of integers is ___________________ .


If * is defined on the set R of all real numbers by *: a*b = `sqrt(a^2 + b^2 ) `, find the identity elements, if it exists in R with respect to * .


Determine whether * is a binary operation on the sets-given below.

(a * b) = `"a"sqrt("b")` is binary on R


Fill in the following table so that the binary operation * on A = {a, b, c} is commutative.

* a b c
a b    
b c b a
c a   c

Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:

* a b c d
a a c b d
b d a b c
c c d a a
d d b a c

Is it commutative and associative?


Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under * . If so, examine the existence of identity, existence of inverse properties for the operation * on M


Choose the correct alternative:

A binary operation on a set S is a function from


Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.


The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.


The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA  "a, b" in "Q" - {0}` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×