मराठी

Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) =  (ac, b + ad), for all (a, b) (c, d) ∈ A. Find - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) =  (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.

(iii)and hence write the inverse of elements (5, 3) and (1/2,4)

उत्तर

(i)

Let E=(x, y) be the identity element in A with respect to *, x,  yQ such that X*E=X=E*X, XA

X*E=X and E*X=X

(ax, b+ay)=(a, b) and (xa, y+xb)=(a, b)

Considering (ax, b+ay)=(a, b)

ax=a     

x=1    and b+ay=b 

y=0                 [x=1]

Also,

Considering (xa, y+xb(a, b)

xa=a

x=1and y+xb=b

y=0                  [ x=1] (1, 0) is the identity element in A with respect to *.

(ii)

Let F=(m, n) be the inverse in A, m, nQ

X*F=E and F*X=E

(am, b+an)=(1, 0) and (ma, n+mb)=(1, 0)

Considering (am, b+an)=(1, 0)

am=1

m=1/and b+an=0

n=b/a   

Also,

Considering (ma, n+mb)=(1, 0)

ma=1

m=1/and n+mb=0

n=b/a          (m=1/a)

The inverse of (a, b)A with respect to * is (1a,ba)A1.

(iii)Now let us find the inverse of elements (5,3)and(12,4)

Hence , inverse of (5,3)is(15,35)

And inverse of (12,4)is(2,-412)=(2,-8)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Patna Set 2

संबंधित प्रश्‍न

Let * be a binary operation, on the set of all non-zero real numbers, given by ab =ab5 for all a,b∈ R-{0} that 2*(x*5)=10


Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.


Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by = |− b|


Determine whether the following operation define a binary operation on the given set or not :

on Q defined by ab=a1b+1for all a, bQ.


Let * be a binary operation on the set I of integers, defined by a * b = 2a + b − 3. Find the value of 3 * 4.


Check the commutativity and associativity of the following binary operations '⊙' on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation  '*' on R defined by a * b = a + b − 7 for all ab ∈ R ?


Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative ?


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Show that '*' is both commutative and associative ?


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :

Show that '⊙' is commutative and associative on A ?


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :

Find the invertible elements in A ?


Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.


Define a binary operation on a set.


If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.


If G is the set of all matrices of the form

[xxxx],where x R{0} then the identity element with respect to the multiplication of matrices as binary operation, is ______________ .


Let * be a binary operation defined on Q+ by the rule

ab=ab3 for all a, b Q+ The inverse of 4 * 6 is ___________ .


The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .


Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:

* a b c d
a a c b d
b d a b c
c c d a a
d d b a c

Is it commutative and associative?


Choose the correct alternative:

A binary operation on a set S is a function from


Choose the correct alternative:

Which one of the following is a binary operation on N?


Choose the correct alternative:

In the set R of real numbers ‘*’ is defined as follows. Which one of the following is not a binary operation on R?


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = ab4 for a, b ∈ Q.


Let R be the set of real numbers and * be the binary operation defined on R as a * b = a + b – ab ∀ a, b ∈ R. Then, the identity element with respect to the binary operation * is ______.


Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.


Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.


A binary operation on a set has always the identity element.


Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.