मराठी

Let * Be a Binary Operation on the Set I of Integers, Defined by a * B = 2a + B − 3. Find the Value of 3 * 4. - Mathematics

Advertisements
Advertisements

प्रश्न

Let * be a binary operation on the set I of integers, defined by a * b = 2a + b − 3. Find the value of 3 * 4.

उत्तर

Given: a * b = 2a + b − 3   
 3 * 4 = 2 (3) + 4 \[-\] 3

          = 6 + 4 \[-\] 3

           = 7

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Binary Operations - Exercise 3.1 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 3 Binary Operations
Exercise 3.1 | Q 3 | पृष्ठ ४

संबंधित प्रश्‍न

Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) =  (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.

(iii)and hence write the inverse of elements (5, 3) and (1/2,4)


For each binary operation * defined below, determine whether * is commutative or associative.

On Q, define a * b  = `(ab)/2`


Let*′ be the binary operation on the set {1, 2, 3, 4, 5} defined by *′ = H.C.F. of and b. Is the operation *′ same as the operation * defined in Exercise 4 above? Justify your answer.


Let * be a binary operation on the set of rational numbers as follows:

(i) − 

(ii) a2 + b2

(iii) ab 

(iv) = (− b)2

(v) a * b = ab/4

(vi) ab2

Find which of the binary operations are commutative and which are associative.


Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as

a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`

Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = a + b - 2 for all a, b ∈ N


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

 On Z+, define * by a * b = a

Here, Z+ denotes the set of all non-negative integers.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On R, define * by a * b = a + 4b2

Here, Z+ denotes the set of all non-negative integers.


Let S be the set of all rational numbers of the form \[\frac{m}{n}\] , where m ∈ Z and n = 1, 2, 3. Prove that * on S defined by a * b = ab is not a binary operation.


Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?


Check the commutativity and associativity of the following binary operation  '*' on R defined by a * b = a + b − 7 for all ab ∈ R ?


If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].


On the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a , b ∈ Z. Prove that * is not associative on Z.


On Z, the set of all integers, a binary operation * is defined by a * b = a + 3b − 4. Prove that * is neither commutative nor associative on Z.


On the set Q of all ration numbers if a binary operation * is defined by \[a * b = \frac{ab}{5}\] , prove that * is associative on Q.


On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.


Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the identity element in Z ?


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (ab) ⊙ (cd) = (acbc + d) for all (ab), (cd) ∈ R0 × R :

Find the identity element in A ?

 


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by  \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\]:

Find the invertible elements of Q0 ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the invertible element in A ?


Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?


For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.


Let * be a binary operation defined by a * b = 3a + 4b − 2. Find 4 * 5.


Let * be a binary operation on set of integers I, defined by a * b = 2a + b − 3. Find the value of 3 * 4.


On the power set P of a non-empty set A, we define an operation ∆ by

\[X ∆ Y = \left( \overline{X} \cap Y \right) \cup \left( X \cap \overline{Y} \right)\]

Then which are of the following statements is true about ∆.


Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all ab ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .


Let * be a binary operation defined on set Q − {1} by the rule a * b = a + b − ab. Then, the identify element for * is ____________ .


On the set Q+ of all positive rational numbers a binary operation * is defined by \[a * b = \frac{ab}{2} \text{ for all, a, b }\in Q^+\]. The inverse of 8 is _________ .


Consider the binary operation * defined by the following tables on set S = {a, bcd}.

a b c  d
a a b c d
b b a d c
c c d a b
d d c b a


Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A


Choose the correct alternative:

Subtraction is not a binary operation in


Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.


The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.


Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.


Let * be a binary operation on set Q – {1} defind by a * b = a + b – ab : a, b ∈ Q – {1}. Then * is ____________.


Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×